2-oleoylglycerol and glyceryl-2-arachidonate

2-oleoylglycerol has been researched along with glyceryl-2-arachidonate* in 13 studies

Trials

1 trial(s) available for 2-oleoylglycerol and glyceryl-2-arachidonate

ArticleYear
Sleep Restriction Enhances the Daily Rhythm of Circulating Levels of Endocannabinoid 2-Arachidonoylglycerol.
    Sleep, 2016, Mar-01, Volume: 39, Issue:3

    Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake.. In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions.. A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks.. Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep.. A commentary on this article appears in this issue on page 495.

    Topics: Adolescent; Adult; Appetite Regulation; Arachidonic Acids; Circadian Rhythm; Cross-Over Studies; Eating; Endocannabinoids; Fasting; Female; Glycerides; Healthy Volunteers; Humans; Hunger; Hyperphagia; Male; Obesity; Reward; Sleep; Sleep Deprivation; Wakefulness; Young Adult

2016

Other Studies

12 other study(ies) available for 2-oleoylglycerol and glyceryl-2-arachidonate

ArticleYear
Plasma endocannabinoids and cannabimimetic fatty acid derivatives are altered in gastroparesis: A sex- and subtype-dependent observation.
    Neurogastroenterology and motility, 2021, Volume: 33, Issue:1

    Gastroparesis (GP) is a motility disorder of the stomach presenting with upper gastrointestinal symptoms in the setting of delayed gastric emptying. Endocannabinoids are involved in the regulation of GI function including motility. However, their role in the pathophysiology of GP has not been sufficiently investigated. Our goal was to compare the circulating levels of endocannabinoids and cannabimimetic fatty acid derivatives in GP versus control subjects.. The study compared plasma concentrations of endocannabinoids and their lipoamine and 2-acyl glycerol congeners, measured by high-pressure liquid chromatography/tandem mass spectrometry (HPLC-MS-MS), in adult patients with diabetic gastroparesis (DM-GP; n = 24; n = 16 female), idiopathic gastroparesis (ID-GP; n = 19; n = 11 female), diabetic patients without GP (DM; n = 19; n = 10 female), and healthy controls (HC; n = 18; n = 10 female). Data, presented as mean ± SEM, were analyzed with ANOVA (Sidak post hoc).. Endocannabinoids anandamide (AEA: 0.5 ± 0.1 nMol/L) and 2-arachidonoyl glycerol (2-AG: 2.6 ± 0.7 nMol/L) were significantly lower in female DM-GP patients vs. DM females (AEA: 2.5 ± 0.7 nMol/L and 2-AG: 9.4 ± 3.3 nMol/L). Other monoacylglycerols including 2-palmitoyl glycerol and 2-oleoyl glycerol were also lower in female DM-GP patients compared to DM females. No changes were observed in men.. Endocannabinoids and other fatty acid derivatives with cannabimimetic properties are reduced in female DM-GP patients. Since GP, particularly with diabetic etiology, is more prevalent among women and since cannabinoids are antiemetic, this decrease in levels may contribute to symptom development in these subjects. Targeting the endocannabinoid system may be a future therapeutic option in DM-GP patients.

    Topics: Arachidonic Acids; Case-Control Studies; Chromatography, High Pressure Liquid; Diabetes Complications; Diabetes Mellitus; Endocannabinoids; Ethanolamines; Female; Gastroparesis; Glycerides; Humans; Male; Middle Aged; Polyunsaturated Alkamides; Sex Factors; Tandem Mass Spectrometry

2021
Serum Endocannabinoid and Mood Changes after Exercise in Major Depressive Disorder.
    Medicine and science in sports and exercise, 2019, Volume: 51, Issue:9

    The endocannabinoid (eCB) system is implicated in the pathophysiology of depression and is responsive to acute exercise in healthy adults.. We aimed to describe acute changes in serum eCB across a prescribed moderate (MOD) and a self-selected/preferred (PREF) intensity exercise session in women with major depressive disorder (MDD) and determine relationships between changes in eCB and mood states.. Women with MDD (n = 17) exercised in separate sessions for 20 min on a cycle ergometer at both MOD or PREF in a within-subjects design. Blood was drawn before and within 10 min after exercise. Serum concentrations of eCB (anandamide [AEA], 2-arachidonoylglycerol) and related lipids (palmitoylethanolamine, oleoylethanolamine, 2-oleoylglycerol) were quantified using stable isotope-dilution, liquid chromatography/mass spectrometry/mass spectrometry. The profile of mood states and state-trait anxiety inventory (state only) were completed before, 10 min and 30 min postexercise.. Significant elevations in AEA (P = 0.013) and oleoylethanolamine (P = 0.024) occurred for MOD (moderate effect sizes: Cohen's d = 0.58 and 0.41, respectively). Significant (P < 0.05) moderate negative associations existed between changes in AEA and mood states for MOD at 10 min (depression, confusion, fatigue, total mood disturbance [TMD] and state anxiety) and 30 min postexercise (confusion, TMD and state anxiety). Significant (P < 0.05) moderate negative associations existed between 2-arachidonoylglycerol and mood states at 10 min (depression and confusion) and 30 min postexercise (confusion and TMD). Changes in eCB or related lipids or eCB-mood relationships were not found for PREF.. Given the broad, moderate-strength relationships between improvements in mood states and eCB increases after MOD, it is plausible that the eCB system contributes to the mood-enhancing effects of prescribed acute exercise in MDD. Alternative mechanisms are likely involved in the positive mood state effects of preferred exercise.

    Topics: Adult; Affect; Amides; Arachidonic Acids; Depressive Disorder, Major; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Humans; Middle Aged; Oleic Acids; Palmitic Acids; Polyunsaturated Alkamides

2019
Analysis of ECs and related compounds in plasma: artifactual isomerization and ex vivo enzymatic generation of 2-MGs.
    Journal of lipid research, 2014, Volume: 55, Issue:5

    The analysis of peripheral endocannabinoids (ECs) is a good biomarker of the EC system. Their concentrations, from clinical studies, strongly depend on sample collection and time processing conditions taking place in clinical and laboratory settings. The analysis of 2-monoacylglycerols (MGs) (i.e., 2-arachidonoylglycerol or 2-oleoylglycerol) is a particularly challenging issue because of their ex vivo formation and chemical isomerization that occur after blood sample collection. We provide evidence that their ex vivo formation can be minimized by adding Orlistat, an enzymatic lipase inhibitor, to plasma. Taking into consideration the low cost of Orlistat, we recommend its addition to plasma collecting tubes while maintaining sample cold chain until storage. We have validated a method for the determination of the EC profile of a range of MGs and N-acylethanolamides in plasma that preserves the original isomer ratio of MGs. Nevertheless, the chemical isomerization of 2-MGs can only be avoided by an immediate processing and analysis of samples due to their instability during conservation. We believe that this new methodology can aid in the harmonization of the measurement of ECs and related compounds in clinical samples.

    Topics: Arachidonic Acids; Artifacts; Blood Chemical Analysis; Drug Stability; Endocannabinoids; Female; Glycerides; Humans; Isomerism; Lactones; Lipase; Male; Orlistat; Reproducibility of Results

2014
Mechanisms of exercise-induced hypoalgesia.
    The journal of pain, 2014, Volume: 15, Issue:12

    The purpose of this study was to examine opioid and endocannabinoid mechanisms of exercise-induced hypoalgesia (EIH). Fifty-eight men and women (mean age = 21 years) completed 3 sessions. During the first session, participants were familiarized with the temporal summation of heat pain and pressure pain protocols. In the exercise sessions, following double-blind administration of either an opioid antagonist (50 mg naltrexone) or placebo, participants rated the intensity of heat pulses and indicated their pressure pain thresholds and pressure pain ratings before and after 3 minutes of submaximal isometric exercise. Blood was drawn before and after exercise. Results indicated that circulating concentrations of 2 endocannabinoids, N-arachidonylethanolamine and 2-arachidonoylglycerol, as well as related lipids oleoylethanolamide, palmitoylethanolamide, N-docosahexaenoylethanolamine, and 2-oleoylglycerol, increased significantly (P < .05) following exercise. Pressure pain thresholds increased significantly (P < .05), whereas pressure pain ratings decreased significantly (P < .05) following exercise. Also, temporal summation ratings were significantly lower (P < .05) following exercise. These changes in pain responses did not differ between the placebo and naltrexone conditions (P > .05). A significant association was found between EIH and docosahexaenoylethanolamine. These results suggest involvement of a nonopioid mechanism in EIH following isometric exercise.. Currently, the mechanisms responsible for EIH are unknown. This study provides support for a potential endocannabinoid mechanism of EIH following isometric exercise.

    Topics: Adolescent; Adult; Amides; Arachidonic Acids; Cross-Over Studies; Double-Blind Method; Endocannabinoids; Ethanolamines; Exercise; Female; Glycerides; Glycine; Hot Temperature; Humans; Isometric Contraction; Male; Oleic Acids; Pain; Pain Perception; Pain Threshold; Palmitic Acids; Pressure; Young Adult

2014
Swim stress differentially affects limbic contents of 2-arachidonoylglycerol and 2-oleoylglycerol.
    Neuroscience, 2012, Mar-01, Volume: 204

    Restraint stress exposures evoke progressively larger increases in 2-arachidonoylglycerol (2-AG) in limbic brain regions as the number of repetitions increases. The Porsolt swim test usually involves two swim exposures separated by 24 h, and we asked whether the 2-AG response differed between the first and second exposures.. Four groups of male C57/Bl6N mice were studied: control; exposed to a single 6 min swim and killed immediately; exposed to a single 6 min swim and killed 24 h later; and exposed to two swims, separated by 24 h, and killed after the second swim. Outcomes were swim behavior, serum corticosterone, and 2-AG and 2-oleoylglycerol (2-OG) contents in amygdala, hippocampus, and prefrontal cortex.. Mean 2-AG contents were not significantly different among the four treatment groups in any brain region and did not correlate with immobility in either forced swim exposure. However, 2-AG contents in all three brain regions only of the mice exposed to two swims were significantly, positively correlated with serum corticosterone concentrations measured at the same time. 2-OG is present in brain and exhibits a striking regional heterogeneity in control mice. 2-OG concentrations in prefrontal cortex were significantly reduced in the mice killed on the second day compared with the mice killed on the first day. As the target of 2-OG in brain is not known, the significance of these observations await further studies.. Although prior exposure to swim stress does not alter brain 2-AG contents upon re-exposure, 2-AG concentrations in brain become significantly correlated with the hypothalamic-pituitary-adrenal (HPA) axis response to stress when prior exposure to the stress has occurred. These data suggest that even a single exposure to a short period of intense stress sensitizes the 2-AG response to re-exposure to that situation and are consistent with a role for endocannabinoid signaling in modulating stress responses.

    Topics: Animals; Arachidonic Acids; Corticosterone; Endocannabinoids; Glycerides; Hypothalamo-Hypophyseal System; Limbic System; Male; Mice; Pituitary-Adrenal System; Stress, Physiological; Stress, Psychological; Swimming

2012
The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting cannabinoid receptors.
    British journal of pharmacology, 2012, Volume: 167, Issue:8

    Pharmacological activation of cannabinoid CB(1) and CB(2) receptors is a therapeutic strategy to treat chronic and inflammatory pain. It was recently reported that a mixture of natural triterpenes α- and β-amyrin bound selectively to CB(1) receptors with a subnanomolar K(i) value (133 pM). Orally administered α/β-amyrin inhibited inflammatory and persistent neuropathic pain in mice through both CB(1) and CB(2) receptors. Here, we investigated effects of amyrins on the major components of the endocannabinoid system.. We measured CB receptor binding interactions of α- and β-amyrin in validated binding assays using hCB(1) and hCB(2) transfected CHO-K1 cells. Effects on endocannabinoid transport in U937 cells and breakdown using homogenates of BV2 cells and pig brain, as well as purified enzymes, were also studied.. There was no binding of either α- or β-amyrin to hCB receptors in our assays (K(i) > 10 µM). The triterpene β-amyrin potently inhibited 2-arachidonoyl glycerol (2-AG) hydrolysis in pig brain homogenates, but not that of anandamide. Although β-amyrin only weakly inhibited purified human monoacylglycerol lipase (MAGL), it also inhibited α,β-hydrolases and more potently inhibited 2-AG breakdown than α-amyrin and the MAGL inhibitor pristimerin in BV2 cell and pig brain homogenates.. We propose that β-amyrin exerts its analgesic and anti-inflammatory pharmacological effects via indirect cannabimimetic mechanisms by inhibiting the degradation of the endocannabinoid 2-AG without interacting directly with CB receptors. Triterpenoids appear to offer a very broad and largely unexplored scaffold for inhibitors of the enzymic degradation of 2-AG.. This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; CHO Cells; Cricetinae; Cricetulus; Endocannabinoids; Glycerides; Humans; Hydrolysis; Monoacylglycerol Lipases; Oleanolic Acid; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Swine; U937 Cells

2012
Spinal administration of the monoacylglycerol lipase inhibitor JZL184 produces robust inhibitory effects on nociceptive processing and the development of central sensitization in the rat.
    British journal of pharmacology, 2012, Volume: 167, Issue:8

    The cannabinoid receptor-mediated analgesic effects of 2-arachidonoylglycerol (2-AG) are limited by monoacylglycerol lipase (MAGL). 4-nitrophenyl 4-[bis (1,3-benzodioxol-5-yl) (hydroxy) methyl] piperidine-1-carboxylate (JZL184) is a potent inhibitor of MAGL in the mouse, though potency is reportedly reduced in the rat. Here we have assessed the effects of spinal inhibition of MAGL with JZL184 on nociceptive processing in rats.. In vivo spinal electrophysiological assays in anaesthetized rats were used to determine the effects of spinal administration of JZL184 on spinal nociceptive processing in the presence and absence of hindpaw inflammation. Contributions of CB(1) receptors to these effects was assessed with AM251. Inhibition of 2-oleoylglycerol hydrolytic activity and alterations of 2-AG in the spinal cord after JZL 184 were also assessed.. Spinal JZL184 dose-dependently inhibited mechanically evoked responses of wide dynamic range (WDR) neurones in naïve anaesthetized rats, in part via the CB(1) receptor. A single spinal administration of JZL184 abolished inflammation-induced expansion of the receptive fields of spinal WDR neurones. However, neither spinal nor systemic JZL184 altered levels of 2-AG, or 2-oleoylglycerol hydrolytic activity in the spinal cord, although JZL184 displayed robust inhibition of MAGL when incubated with spinal cord tissue in vitro.. JZL184 exerted robust anti-nociceptive effects at the level of the spinal cord in vivo and inhibited rat spinal cord MAGL activity in vitro. The discordance between in vivo and in vitro assays suggests that localized sites of action of JZL184 produce these profound functional inhibitory effects.. This article is part of a themed section on Cannabinoids. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.167.issue-8.

    Topics: Amidohydrolases; Analgesics; Animals; Anti-Inflammatory Agents; Arachidonic Acids; Benzodioxoles; Carrageenan; Central Nervous System Sensitization; Drug Administration Routes; Endocannabinoids; Ethanolamines; Glycerides; Inflammation; Lipoprotein Lipase; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Pain; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Species Specificity; Spinal Cord

2012
Endocannabinoids and diacylglycerol kinase activity.
    Biochimica et biophysica acta, 2011, Volume: 1808, Issue:4

    Mammalian diacylglycerol kinases are a family of enzymes that catalyze the phosphorylation of diacylglycerol to produce phosphatidic acid. The extent of interaction of these enzymes with monoacylglycerols is the focus of the present study. Because of the structural relationship between mono- and diacylglycerols, one might expect the monoacylglycerols to be either substrates or inhibitors of diacylglycerol kinases. This would have some consequence to lipid metabolism. One of the lipid metabolites that would be affected is 2-arachidonoyl glycerol, which is an endogenous ligand for the CB1 cannabinoid receptor. We determined if the monoglycerides 2-arachidonoyl glycerol or 2-oleoyl glycerol affected diacylglycerol kinase activity. We found that 2-arachidonoyl glycerol is a very poor substrate for either the epsilon or the zeta isoforms of diacylglycerol kinases. Moreover, 2-arachidonoyl glycerol is an inhibitor for both of these diacylglycerol kinase isoforms. 2-oleoyl glycerol is also a poor substrate for these two isoforms of diacylglycerol kinases. As an inhibitor, 2-oleoyl glycerol inhibits diacylglycerol kinase ε less than does 2-arachidonoyl glycerol, while for diacylglycerol kinase ζ, these two monoglycerides have similar inhibitory potency. These results have implications for the known role of diacylglycerol kinase ε in neuronal function and in epilepsy since the action of this enzyme will remove 1-stearoyl-2-arachidonoylglycerol, the precursor of the endocannabinoid 2-arachidonoyl glycerol.

    Topics: Arachidonic Acids; Biocatalysis; Cannabinoid Receptor Modulators; Diacylglycerol Kinase; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Humans; Protein Binding; Substrate Specificity

2011
Hydrolysis of 2-arachidonoylglycerol in Tetrahymena thermophila. Identification and partial characterization of a Monoacylglycerol Lipase-like enzyme.
    European journal of protistology, 2010, Volume: 46, Issue:4

    Tetrahymena thermophila is a model organism for molecular and cellular biology. Previous studies from our group showed that Tetrahymena contains major components of the endocannabinoid system, such as various endocannabinoids and FAAH. In mammalian cells the endocannabinoid 2-arachidonoylglycerol is inactivated mainly by MAGL. In this study we showed that 2-arachidonoylglycerol and 2-oleoylglycerol are hydrolyzed by the combined actions of MAGL and FAAH. MAGL-like activity was examined in the presence of FAAH specific inhibitors, URB597 or AM374 and showed optimum pH of 8-9, apparent K(M) of 14.1μM and V(max) of 5.8nmol/min×mg. The enzyme was present in membrane bound and cytosolic isoforms; molecular mass was determined at ∼45 and ∼40kDa. MAGL and FAAH could also inactivate endogenous signaling lipids, which might play an important role in Tetrahymena as suggested in mammals. Tetrahymena could be used as a model system for testing drugs targeting enzymes of the endocannabinoid system.

    Topics: Amidohydrolases; Arachidonic Acids; Benzamides; Carbamates; Cell Membrane; Cytosol; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hydrogen-Ion Concentration; Hydrolysis; Kinetics; Molecular Weight; Monoacylglycerol Lipases; Palmitates; Protozoan Proteins; Tetrahymena thermophila

2010
Metabolism of 2-acylglycerol in rabbit and human platelets. Involvement of monoacylglycerol lipase and fatty acid amide hydrolase.
    Platelets, 2009, Volume: 20, Issue:6

    The endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (N-arachidonoylethanolamine, AEA) are produced by neurons and other cells, including platelets, in a stimulus-dependent manner and act as signaling molecules; they are then inactivated through transport into cells followed by enzymatic degradation. A number of studies showed that monoacylglycerol lipase (MAGL) plays an important role in the degradation of 2-AG. In this study we investigated the enzymatic degradation of 2-acylglycerols in rabbit platelets and we characterized the responsible enzyme(s). [(3)H]2-AG and [(3)H]2-oleoylglycerol (2-OG) were both metabolized to [(3)H]glycerol and the respective fatty acid in a time and protein concentration-dependent manner, apparently by the action of MAGL activity. In the presence of the specific fatty acid amide hydrolase (FAAH) inhibitors URB597 and AM374, though, 2-OG hydrolysis was inhibited up to 55% in a concentration-dependent manner (IC(50) = 129.8 nM and 20.9 nM respectively). These results indicate the involvement of both MAGL and FAAH on 2-acylglycerol hydrolysis. MAGL was further characterized in the presence of URB597 and it was found that 2-monoacylglycerols were hydrolyzed in a time, pH and protein concentration-dependent manner and hydrolysis followed Michaelis-Menten kinetics, with an apparent K(M) of 0.11 microM and V(max) of 1.32 nmol/min*mg protein. Subcellular fractionation of platelet homogenate showed that MAGL activity was present in both the cytosolic and membrane fractions. In conclusion, the endocannabinoid 2-AG, as well as other 2-acylglycerols, are substrates of both FAAH and MAGL; the latter was characterized for the first time in platelets. In human platelets, under the same experimental conditions, the hydrolysis of 2-acylglycerols was higher and MAGL activity showed a different sensitivity against the inhibitors mentioned above. Finally, immunoblot analysis revealed the presence of MAGL, both in rabbit and human platelets, with a molecular mass of approximately 33 kDa.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Blood Platelets; Carbamates; Endocannabinoids; Enzyme Inhibitors; Glycerides; Glycerol; Humans; Hydrogen-Ion Concentration; Hydrolysis; Immunoblotting; Monoacylglycerol Lipases; Palmitates; Rabbits; Subcellular Fractions; Tritium

2009
Structure-activity relationship of a series of inhibitors of monoacylglycerol hydrolysis--comparison with effects upon fatty acid amide hydrolase.
    Journal of medicinal chemistry, 2007, Oct-04, Volume: 50, Issue:20

    A series of 32 heterocyclic analogues based on the structure of 2-arachidonoylglycerol (2-AG) were synthesized and tested for their ability to inhibit monoacylglycerol lipase and fatty acid amide hydrolase activities. The designed compounds feature a hydrophobic moiety and different heterocyclic subunits that mimic the glycerol fragment. This series has allowed us to carry out the first systematic structure-activity relationship study on inhibition of 2-AG hydrolysis. The most promising compounds were oxiran-2-ylmethyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate (1) and tetrahydro-2H-pyran-2-ylmethyl (5Z,8Z,11Z,14Z)-icosa-5,8,11,14-tetraenoate (5). They inhibited cytosolic 2-oleoylglycerol (2-OG) hydrolysis completely (IC50 values of 4.5 and 5.6 muM, respectively). They also blocked, albeit less potently, 2-OG hydrolysis in membrane fractions (IC50 values of 19 and 26 muM, respectively) and anandamide hydrolysis (IC50 values of 12 and 51 muM, respectively). These compounds will be useful in delineating the importance of the cytosolic hydrolytic activity in the regulation of 2-AG levels and, hence, its potential as a target for drug development.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Brain; Cell Line; Cytosol; Endocannabinoids; Epoxy Compounds; Glycerides; Hydrolysis; Hydrophobic and Hydrophilic Interactions; In Vitro Techniques; Membranes; Mice; Monoacylglycerol Lipases; Monoglycerides; Polyunsaturated Alkamides; Pyrans; Rats; Stereoisomerism; Structure-Activity Relationship

2007
Influence of the degree of unsaturation of the acyl side chain upon the interaction of analogues of 1-arachidonoylglycerol with monoacylglycerol lipase and fatty acid amide hydrolase.
    Biochemical and biophysical research communications, 2005, Nov-11, Volume: 337, Issue:1

    Little is known as to the structural requirements of the acyl side chain for interaction of acylglycerols with monoacylglycerol lipase (MAGL), the enzyme chiefly responsible for the metabolism of the endocannabinoid 2-arachidonoylglycerol (2-AG) in the brain. In the present study, a series of twelve analogues of 1-AG (the more stable regioisomer of 2-AG) were investigated with respect to their ability to inhibit the metabolism of 2-oleoylglycerol by cytosolic and membrane-bound MAGL. In addition, the ability of the compounds to inhibit the hydrolysis of anandamide by fatty acid amide hydrolase (FAAH) was investigated. For cytosolic MAGL, compounds with 20 carbon atoms in the acyl chain and 2-5 unsaturated bonds inhibited the hydrolysis of 2-oleoylglycerol with similar potencies (IC50 values in the range 5.1-8.2 microM), whereas the two compounds with a single unsaturated bond were less potent (IC50 values 19 and 21 microM). The fully saturated analogue 1-monoarachidin did not inhibit the enzyme, whereas the lower side chain analogues 1-monopalmitin and 1-monomyristin inhibited the enzyme with IC50 values of 12 and 32 microM, respectively. The 22-carbon chain analogue of 1-AG was also potent (IC50 value 4.5 microM). Introduction of an alpha-methyl group for the C20:4, C20:3, and C22:4 compounds did not affect potency in a consistent manner. For the FAAH and the membrane-bound MAGL, there was no obvious relationship between the degree of unsaturation of the acyl side chain and the ability to inhibit the enzymes. It is concluded that increasing the number of unsaturated bonds on the acyl side chain of 1-AG from 1 to 5 has little effect on the affinity of acylglycerols for cytosolic MAGL.

    Topics: Amidohydrolases; Arachidonic Acids; Endocannabinoids; Enzyme Inhibitors; Fatty Acids, Unsaturated; Glycerides; Monoacylglycerol Lipases

2005