2-octenal has been researched along with 2-4-decadienal* in 5 studies
1 review(s) available for 2-octenal and 2-4-decadienal
Article | Year |
---|---|
1,N6-etheno-2'-deoxyadenosine adducts from trans, trans-2,4-decadienal and trans-2-octenal.
Topics: Aldehydes; Animals; Deoxyadenosines; DNA; DNA Adducts; Mutagens; Thymus Gland | 2001 |
4 other study(ies) available for 2-octenal and 2-4-decadienal
Article | Year |
---|---|
Binding of Selected Aroma Compounds to Myofibrillar Protein, Sarcoplasmic Protein, and Collagen during Thermal Treatment: Role of Conformational Changes and Degradation of Proteins.
To investigate the effects of conformational changes and thermal degradation of myofibrillar protein (MP), sarcoplasmic protein (SP), and collagen (CO) on the binding ability for aroma compounds during heating. Using SDS-PAGE, HPLC, and LC-MS/MS, a consistent rise in the total concentration of peptides and free amino acids formed by the thermal degradation of proteins was observed. The surface hydrophobicity, total sulfhydryl content, particle size, and secondary structure content of proteins changed significantly over time. Furthermore, the aroma binding ability of proteins was determined by gas chromatography-mass spectrometry. The results revealed an increase in binding ability during 5 or 10 min of heating due to protein unfolding and the accumulation of degradation products. However, the binding ability decreased due to protein aggregation with prolonged heating. Notably, all proteins exhibited strong affinity toward ( Topics: Chromatography, Liquid; Collagen; Odorants; Tandem Mass Spectrometry | 2023 |
Nematicidal activity of (E,E)-2,4-decadienal and (E)-2-decenal from Ailanthus altissima against Meloidogyne javanica.
Methanol extracts of various plant parts of Ailanthus altissima were tested against the root knot nematode Meloidogyne javanica . Extracts of bark (ABE), wood (AWE), roots (ARE), and leaves (ALE) from A. altissima were investigated against freshly hatched second-stage juveniles (J(2)). AWE was the most active extract, with EC(50/3d) of 58.9 mg/L, while ALE, ARE, and ABE did not show nematicidal activity. The chemical composition of the extracts of A. altissima was determined by gas chromatography-mass spectrometry, and (E,E)-2,4-decadienal, (E)-2-undecenal, (E)-2-decenal, hexanal, nonanal, and furfural were the most prominent constituents. (E,E)-2,4-Decadienal, (E)-2-decenal, and furfural showed the highest nematicidal activity against M. javanica , with EC(50/1d) = 11.7, 20.43, and 21.79 mg/L, respectively, while the other compounds were inactive at the concentrations tested. The results obtained showed that AWE and its constituents (E,E)-2,4-decadienal and (E)-2-decenal could be considered as potent botanical nematicidal agents. Topics: Ailanthus; Aldehydes; Alkenes; Animals; Antinematodal Agents; Plant Bark; Plant Extracts; Plant Leaves; Plant Roots; Tylenchoidea; Wood | 2012 |
In depth study of acrylamide formation in coffee during roasting: role of sucrose decomposition and lipid oxidation.
Coffee, as a source of acrylamide, needs to be investigated in depth to understand the contribution of different precursors. This study aimed to investigate the contributions of sucrose decomposition and lipid oxidation on acrylamide formation in coffee during roasting. Coffee beans and model systems were used to monitor the accumulation of neo-formed carbonyls during heating through sucrose decomposition and lipid oxidation. High resolution mass spectrometry analyses confirmed the formation of 5-hydroxymethylfurfural (HMF) and 3,4-dideoxyosone, which were identified as the major sugar decomposition products in both roasted coffee and model systems. Among others, 2-octenal, 2,4-decadienal, 2,4-heptadienal, 4-hydroxynonenal, and 4,5-epoxy-2-decenal were identified in relatively high quantities in roasted coffee. Formation and elimination of HMF in coffee during roasting had a kinetic pattern similar to those of acrylamide. Its concentration rapidly increased within 10 min followed by an exponential decrease afterward. The amount of lipid oxidation products tended to increase linearly during roasting. It was concluded from the results that roasting formed a pool of neo-formed carbonyls from sucrose decomposition and lipid oxidation, and they play certain role on acrylamide formation in coffee. Topics: Acrylamide; Aldehydes; Chromatography, Liquid; Coffee; Epoxy Compounds; Food Handling; Furaldehyde; Hot Temperature; Oxidation-Reduction; Sucrose; Tandem Mass Spectrometry | 2012 |
Characterization of fluorescent products from reaction of methyl linoleate hydroperoxides with adenine in the presence of Fe2+ and ascorbic acid.
The structures of fluorescent products formed in the reaction of methyl linoleate hydroperoxides with adenine, FeSO4 and ascorbic acid were investigated to elucidate the mechanism of interaction. The fluorescent products consisted of at least four major components (I-IV), which could be separated by thin-layer chromatography and high-performance liquid chromatography. Both 2-octenal and 2,4-decadienal, degradation products of methyl linoleate hydroperoxides, reacted with adenine to produce a fluorescent product similar to one of the major compounds (II) formed in the reaction of methyl linoleate hydroperoxides. Spectroscopic data suggest that I and III are the same type of compounds, which have closed ring structures with alpha, beta-unsaturated carbonyl groups between the amino group at the 6-position and the nitrogen at the 1-position of adenine. Component II has a closed ring structure at the same site as I and III, and the presence of an ether linkage was suggested. On the basis of these structures, the involvement of 3-nonenal, methyl 12-oxo-9-dodecenoate and 2-octenal was suggested in the interaction of the methyl linoleate hydroperoxides decomposition products and adenine or DNA in the presence of FeSO4 and ascorbic acid. Topics: Adenine; Aldehydes; Ascorbic Acid; Chemical Phenomena; Chemistry; Chromatography, High Pressure Liquid; Chromatography, Thin Layer; DNA; Ferrous Compounds; Fluorescence; Lipid Peroxides; Magnetic Resonance Spectroscopy; Mass Spectrometry; Molecular Structure; Spectrometry, Fluorescence | 1988 |