Page last updated: 2024-08-24

2-methoxyestradiol and allopurinol

2-methoxyestradiol has been researched along with allopurinol in 6 studies

Research

Studies (6)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's3 (50.00)29.6817
2010's3 (50.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J1
Ahlin, G; Artursson, P; Bergström, CA; Gustavsson, L; Karlsson, J; Larsson, R; Matsson, P; Norinder, U; Pedersen, JM1
Barnes, JC; Bradley, P; Day, NC; Fourches, D; Reed, JZ; Tropsha, A1
Brodsky, JL; Chiang, A; Chung, WJ; Denny, RA; Goeckeler-Fried, JL; Havasi, V; Hong, JS; Keeton, AB; Mazur, M; Piazza, GA; Plyler, ZE; Rasmussen, L; Rowe, SM; Sorscher, EJ; Weissman, AM; White, EL1
Biesalski, HK; Frank, J; Kelleher, DK; Lambert, C; Thews, O; Vaupel, P1
Gao, X; Irwin, MG; Liao, XL; Liu, Y; Mao, X; Ng, KF; Ou, JS; Vanhoutte, PM; Wang, T; Xia, Z; Xu, Y1

Other Studies

6 other study(ies) available for 2-methoxyestradiol and allopurinol

ArticleYear
Chemical genetics reveals a complex functional ground state of neural stem cells.
    Nature chemical biology, 2007, Volume: 3, Issue:5

    Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells

2007
Structural requirements for drug inhibition of the liver specific human organic cation transport protein 1.
    Journal of medicinal chemistry, 2008, Oct-09, Volume: 51, Issue:19

    Topics: Cell Line; Computer Simulation; Drug Design; Gene Expression Profiling; Humans; Hydrogen Bonding; Liver; Molecular Weight; Organic Cation Transporter 1; Pharmaceutical Preparations; Predictive Value of Tests; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Structure-Activity Relationship

2008
Cheminformatics analysis of assertions mined from literature that describe drug-induced liver injury in different species.
    Chemical research in toxicology, 2010, Volume: 23, Issue:1

    Topics: Animals; Chemical and Drug Induced Liver Injury; Cluster Analysis; Databases, Factual; Humans; MEDLINE; Mice; Models, Chemical; Molecular Conformation; Quantitative Structure-Activity Relationship

2010
Increasing the Endoplasmic Reticulum Pool of the F508del Allele of the Cystic Fibrosis Transmembrane Conductance Regulator Leads to Greater Folding Correction by Small Molecule Therapeutics.
    PloS one, 2016, Volume: 11, Issue:10

    Topics: Alleles; Benzoates; Cells, Cultured; Cystic Fibrosis; Cystic Fibrosis Transmembrane Conductance Regulator; Endoplasmic Reticulum; Furans; Gene Deletion; HEK293 Cells; HeLa Cells; High-Throughput Screening Assays; Humans; Hydroxamic Acids; Microscopy, Fluorescence; Protein Folding; Protein Structure, Tertiary; Pyrazoles; RNA, Messenger; Small Molecule Libraries; Ubiquitination; Vorinostat

2016
2-Methoxyestradiol enhances reactive oxygen species formation and increases the efficacy of oxygen radical generating tumor treatment.
    European journal of medical research, 2002, Sep-30, Volume: 7, Issue:9

    Topics: 2-Methoxyestradiol; Animals; Antineoplastic Agents; Apoptosis; Caspase 3; Caspases; Cell Division; Cell Survival; Dose-Response Relationship, Drug; Drug Therapy, Combination; Estradiol; Hyperoxia; Hyperthermia, Induced; Hypoxanthine; Lipid Peroxidation; Male; Mitochondria; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Superoxides; Thiobarbituric Acid Reactive Substances; Tumor Cells, Cultured; Xanthine Oxidase

2002
N-acetylcysteine and allopurinol confer synergy in attenuating myocardial ischemia injury via restoring HIF-1α/HO-1 signaling in diabetic rats.
    PloS one, 2013, Volume: 8, Issue:7

    Topics: 2-Methoxyestradiol; Acetylcysteine; Allopurinol; Animals; Antioxidants; Apoptosis; Cardiotonic Agents; Diabetes Mellitus, Experimental; Dinoprost; Drug Synergism; Echocardiography; Estradiol; Heme Oxygenase (Decyclizing); Hypoxia-Inducible Factor 1, alpha Subunit; In Situ Nick-End Labeling; Isoprostanes; Male; Membrane Potential, Mitochondrial; Metalloporphyrins; Myocardial Reperfusion Injury; Protoporphyrins; Rats; Rats, Sprague-Dawley; RNA, Small Interfering; Signal Transduction; Superoxide Dismutase

2013