2-ketogluconate and formic-acid

2-ketogluconate has been researched along with formic-acid* in 2 studies

Other Studies

2 other study(ies) available for 2-ketogluconate and formic-acid

ArticleYear
Mechanism of insoluble phosphate solubilization by Pseudomonas fluorescens RAF15 isolated from ginseng rhizosphere and its plant growth-promoting activities.
    Letters in applied microbiology, 2009, Volume: 49, Issue:2

    To investigate the mechanism of insoluble phosphate (P) solubilization and plant growth-promoting activity by Pseudomonas fluorescens RAF15.. We investigated the ability of Ps. fluorescens RAF15 to solubilize insoluble P via two possible mechanisms: proton excretion by ammonium assimilation and organic acid production. There were no clear differences in pH and P solubilization between glucose-ammonium and glucose-nitrate media. P solubilization was significantly promoted with glucose compared to fructose. Regardless of nitrogen sources used, Ps. fluorescens RAF15 solubilized little insoluble P with fructose. High performance liquid chromatography analysis showed that Ps. fluorescens RAF15 produced mainly gluconic and tartaric acids with small amounts of 2-ketogluconic, formic and acetic acids. During the culture, the pH was reduced with increase in gluconic acid concentration and was inversely correlated with soluble P concentration. Ps. fluorescens RAF1 showed the properties related to plant growth promotion: pectinase, protease, lipase, siderophore, hydrogen cyanide, and indoleacetic acid.. This study indicated that the P solubility was directly correlated with the organic acids produced.. Pseudomonas fluorescens RAF15 possessed different traits related to plant growth promotion. Therefore, Ps. fluorescens RAF15 could be a potential candidate for the development of biofertilizer or biocontrol agent.

    Topics: Acetic Acid; Culture Media; Formates; Fructose; Gluconates; Glucose; Hydrogen-Ion Concentration; Nitrates; Panax; Phosphates; Plant Growth Regulators; Plant Roots; Pseudomonas fluorescens; Quaternary Ammonium Compounds; Soil Microbiology; Tartrates

2009
2-KETOGLUCONATE FERMENTATION BY STREPTOCOCCUS FAECALIS.
    Journal of bacteriology, 1964, Volume: 87

    Goddard, J. L. (University of Oklahoma School of Medicine, Oklahoma City), and J. R. Sokatch. 2-Ketogluconate fermentation by Streptococcus faecalis. J. Bacteriol. 87:844-851. 1964.-Streptococcus faecalis 10Cl did not grow with 2-ketogluconate alone as an energy source, but did grow when gluconate was added. More growth was obtained than could be accounted for by the gluconate alone. The requirement for gluconate in the stimulation of growth on 2-ketogluconate was found to be stoichiometric, not catalytic. Glucose did not replace gluconate in this phenomenon, apparently owing to the repression of the 2-ketogluconate pathway by glucose. Resting cells grown on a combination of gluconate and 2-ketogluconate did ferment 2-ketogluconate without added gluconate. Fermentation balance studies with resting cells detected the following products in moles (per mole of 2-ketogluconate): carbon dioxide, 0.98; lactic acid, 0.19; formic acid, 1.42; acetic acid, 0.70; and ethanol, 0.42. 2-Ketogluconate-1-C(14) and -2-C(14) were prepared and fermented. The data were interpreted to show that 90% of the substrate was decarboxylated to carbon dioxide and pentose phosphate. Pentose phosphate was then fermented to pyruvate through the sedoheptulose diphosphate variation of the pentose phosphate pathway found in this organism. The other 10% of the substrate was converted to pyruvate by way of the Entner-Doudoroff pathway. Calculations of the energy available by the above combination of pathways indicated that about 2.3 moles of adenosine triphosphate per mole of 2-ketogluconate could be obtained if the energy available in acetate formation is conserved through the acetokinase reaction.

    Topics: Acetates; Arsenicals; Bacteriological Techniques; Biochemical Phenomena; Biochemistry; Carbohydrate Metabolism; Carbon Dioxide; Carbon Isotopes; Enterococcus faecalis; Fermentation; Formates; Gluconates; Glucose; Keto Acids; Lactates; Pyruvates; Research

1964