2-ketogluconate and 5-ketogluconic-acid

2-ketogluconate has been researched along with 5-ketogluconic-acid* in 4 studies

Other Studies

4 other study(ies) available for 2-ketogluconate and 5-ketogluconic-acid

ArticleYear
Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans.
    Bioscience, biotechnology, and biochemistry, 2011, Volume: 75, Issue:3

    Selective, high-yield production of 5-keto-D-gluconate (5KGA) from D-glucose by Gluconobacter was achieved without genetic modification. 5KGA production by Gluconobacter suffers byproduct formation of 2-keto-D-gluconate (2KGA). By controlling the medium pH strictly in a range of pH 3.5-4.0, 5KGA was accumulated with 87% conversion yield from D-glucose. The pH dependency of 5KGA formation appeared to be related to that of gluconate oxidizing activity.

    Topics: Bacterial Proteins; Bioreactors; Biotransformation; Fermentation; Gluconates; Gluconobacter; Glucose; Hydrogen-Ion Concentration; Oxidation-Reduction; Sugar Alcohol Dehydrogenases

2011
Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase.
    Applied and environmental microbiology, 2009, Volume: 75, Issue:13

    We isolated thermotolerant Gluconobacter strains that are able to produce 5-keto-d-gluconic acid (5KGA) at 37 degrees C, a temperature at which regular mesophilic 5KGA-producing strains showed much less growth and 5KGA production. The thermotolerant strains produced 2KGA as the major product at both 30 and 37 degrees C. The amount of ketogluconates produced at 37 degrees C was slightly less than the amount produced at 30 degrees C. To improve the yield of 5KGA in these strains, we disrupted flavin adenine dinucleotide-gluconate dehydrogenase (FAD-GADH), which is responsible for 2KGA production. Genes for FAD-GADH were cloned by using inverse PCR and an in vitro cloning strategy. The sequences obtained for three thermotolerant strains were identical and showed high levels of identity to the FAD-GADH sequence reported for the genome of Gluconobacter oxydans 621 H. A kanamycin resistance gene cassette was used to disrupt the FAD-GADH genes in the thermotolerant strains. The mutant strains produced 5KGA exclusively, and the final yields were over 90% at 30 degrees C and 50% at 37 degrees C. We found that the activity of pyrroloquinoline quinone (PQQ)-dependent glycerol dehydrogenase, which is responsible for 5KGA production, increased in response to addition of PQQ and CaCl(2) in vitro when cells were grown at 37 degrees C. Addition of 5 mM CaCl(2) to the culture medium of the mutant strains increased 5KGA production to the point where over 90% of the initial substrate was converted. The thermotolerant Gluconobacter strains that we isolated in this study provide a promising new option for industrial 5KGA production.

    Topics: Bacterial Proteins; Calcium Chloride; Carbohydrate Dehydrogenases; Cloning, Molecular; Coenzymes; Enzyme Activators; Gene Deletion; Gene Order; Genes, Bacterial; Gluconates; Gluconobacter; Molecular Sequence Data; Mutagenesis, Insertional; PQQ Cofactor; Sequence Analysis, DNA; Sequence Homology; Sugar Alcohol Dehydrogenases; Temperature

2009
A Gluconobacter oxydans mutant converting glucose almost quantitatively to 5-keto-D-gluconic acid.
    Applied microbiology and biotechnology, 2005, Volume: 66, Issue:6

    Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 2-keto-D-gluconic acid (2-KGA) and 5-keto-D-gluconic acid (5-KGA) by membrane-bound periplasmic pyrroloquinoline quinone-dependent and flavin-dependent dehydrogenases. The product pattern obtained with several strains differed significantly. To increase the production of 5-KGA, which can be converted to industrially important L-(+)-tartaric acid, growth parameters were optimized. Whereas resting cells of G. oxydans ATCC 621H converted about 11% of the available glucose to 2-KGA and 6% to 5-KGA, with growing cells and improved growth under defined conditions (pH 5, 10% pO2, 0.05% pCO2) a conversion yield of about 45% 5-KGA from the available glucose was achieved. As the accumulation of the by-product 2-KGA is highly disadvantageous for an industrial application of G. oxydans, a mutant was generated in which the membrane-bound gluconate-2-dehydrogenase complex was inactivated. This mutant, MF1, grew in a similar way to the wild type, but formation of the undesired 2-KGA was not observed. Under improved growth conditions, mutant MF1 converted the available glucose almost completely (84%) into 5-KGA. Therefore, this newly developed recombinant strain is suitable for the industrial production of 5-KGA.

    Topics: Fermentation; Gluconates; Gluconobacter oxydans; Glucose; Industrial Microbiology; Mutation

2005
Biotransformation of glucose to 5-keto-D-gluconic acid by recombinant Gluconobacter oxydans DSM 2343.
    Applied microbiology and biotechnology, 2004, Volume: 64, Issue:1

    For the conversion of glucose to 5-keto-D-gluconate (5-KGA), a precursor of the industrially important L-(+)-tartaric acid, Gluconobacter strains were genetically engineered. In order to increase 5-KGA formation, a plasmid-encoded copy of the gene encoding the gluconate:NADP-5 oxidoreductase (gno) was overexpressed in G. oxydans strain DSM 2434. This enzyme is involved in the nonphosphorylative ketogenic oxidation of glucose and oxidizes gluconate to 5-KGA. As the 5-KGA reductase activity depends on the cofactor NADP+, the sthA gene (encoding Escherichia coli transhydrogenase) was cloned and overexpressed in the GNO-overproducing G. oxydans strain. Growth of the sthA-carrying strains was indistinguishable from the G. oxydans wild-type strain and therefore they were chosen for the coupled overexpression of sthA and gno. G. oxydans strain DSM 2343/pRS201-gno-sthA overproducing both enzymes showed an enhanced accumulation of 5-KGA.

    Topics: Bacterial Proteins; Biotransformation; Cloning, Molecular; Escherichia coli; Gene Expression Regulation, Bacterial; Genes, Bacterial; Gluconates; Gluconobacter oxydans; Glucose; NADP; NADP Transhydrogenases; Oxidoreductases; Plasmids; Recombinant Proteins

2004