2-hydroxyestradiol has been researched along with 4-hydroxyestrone* in 9 studies
9 other study(ies) available for 2-hydroxyestradiol and 4-hydroxyestrone
Article | Year |
---|---|
The effects of steroidal estrogens in ACI rat mammary carcinogenesis: 17beta-estradiol, 2-hydroxyestradiol, 4-hydroxyestradiol, 16alpha-hydroxyestradiol, and 4-hydroxyestrone.
Several investigators have suggested that certain hydroxylated metabolites of 17beta-estradiol (E2) are the proximate carcinogens that induce mammary carcinomas in estrogen-sensitive rodent models. The studies reported here were designed to examine the carcinogenic potential of different levels of E2 and the effects of genotoxic metabolites of E2 in an in vivo model sensitive to E2-induced mammary cancer. The potential induction of mammary tumors was determined in female ACI rats subcutaneously implanted with cholesterol pellets containing E2 (1, 2, or 3 mg), or 2-hydroxyestradiol (2-OH E2), 4-hydroxyestradiol (4-OH E2), 16alpha-hydroxyestradiol (16alpha-OH E2), or 4-hydoxyestrone (4-OH E1) (equimolar to 2 mg E2). Treatment with 1, 2, or 3 mg E2 resulted in the first appearance of a mammary tumor between 12 and 17 weeks, and a 50% incidence of mammary tumors was observed at 36, 19, and 18 weeks respectively. The final cumulative mammary tumor incidence in rats treated with 1, 2, or 3 mg E2 for 36 weeks was 50%, 73%, and 100% respectively. Treatment of rats with pellets containing 2-OH E2, 4-OH E2, 16alpha-OH E2, or 4-OH E1 did not induce any detectable mammary tumors. The serum levels of E2 in rats treated with a 1 or 3 mg E2 pellet for 12 weeks was increased 2- to 6-fold above control values (approximately 30 pg/ml). Treatment of rats with E2 enhanced the hepatic microsomal metabolism of E2 to E1, but did not influence the 2- or 4-hydroxylation of E2). In summary, we observed a dose-dependent induction of mammary tumors in female ACI rats treated continuously with E2; however, under these conditions 2-OH E2, 4-OH E2, 16alpha-OH E2, and 4-OH E1 were inactive in inducing mammary tumors. Topics: Animals; Carcinoma in Situ; Carcinoma, Ductal, Breast; Dose-Response Relationship, Drug; Drug Implants; Estradiol; Estriol; Estrogens; Estrogens, Catechol; Female; Hydroxyestrones; Mammary Neoplasms, Experimental; Rats; Rats, Inbred ACI | 2004 |
In vitro generation of peroxynitrite by 2- and 4-hydroxyestrogens in the presence of nitric oxide.
Estrogen metabolism is altered in most, if not all, breast cancer tumors. These alterations primarily lead to the formation of the catechol estrogen metabolites, 2- and 4-hydroxyestrogens, which can generate superoxide anion radicals (O(2)(*)(-)) through the redox cycling of semiquinone/quinone derivatives. In breast cancer cells, the activity of nitric oxide synthase is also frequently elevated, resulting in an increased level of exposure to nitric oxide ((*)NO). Since (*)NO rapidly reacts with O(2)(*)(-) to produce the peroxynitrite anion (ONOO(-)), this study was undertaken to determine whether ONOO(-) can be generated when 2- and 4-hydroxyestrogens are incubated in vitro with (*)NO donor compounds. Using dihydrorhodamine 123 as a specific probe for ONOO(-) formation, a ratio of 100 microM dipropylenetriamine NONOate (DPTA/NO) to 10 microM 4-hydroxyestradiol (4-OHE(2)) gave an optimal ONOO(-) production of 11.9 +/- 1.9 microM (mean +/- SD). Quantification of ONOO(-) was not modified by mannitol, supporting the idea that the hydroxyl radical was not involved. This production of ONOO(-) required the presence of the catechol structure of estrogen metabolites since all methoxyestrogens that were tested were inactive. Hydroxyestrogen metabolites derived from estradiol showed the same efficiency in producing ONOO(-) as those originating from estrone. With DPTA/NO, the 4-hydroxyestrogens generated 30-40% more ONOO(-) than the 2-hydroxyestrogens. Optimal production of ONOO(-) was assessed with DPTA/NO and diethylenetriamine NONOate (initial (*)NO generation rates of 0.76 and 0.08 microM min(-1), respectively). With faster (*)NO-releasing compounds, such as diethylamine NONOate and spermine NONOate, lower levels of ONOO(-) were detected. These data suggest that once the optimal concentration of (*)NO was obtained, the reaction between (*)NO and 4-OHE(2) was saturated. The excess of (*)NO would probably react with aqueous oxygen to form nitrite (NO(2)(-)). Since the third-order reaction rate for the reaction between 2(*)NO and O(2) is 2 x 10(6) M(-2) s(-1), it can therefore be suggested that the reaction between (*)NO and 4-OHE(2) occurs at a faster rate. Topics: Chromatography, High Pressure Liquid; Estradiol; Estrogens, Catechol; Hydroxyestrones; Mass Spectrometry; Nitrates; Nitric Oxide | 2001 |
The ability of four catechol estrogens of 17beta-estradiol and estrone to induce DNA adducts in Syrian hamster embryo fibroblasts.
Catechol estrogens are considered critical intermediates in estrogen-induced carcinogenesis. We demonstrated previously that 17beta-estradiol (E(2)), estrone (E(1)) and four of their catechol estrogens, 2- and 4-hydroxyestradiols (2- and 4-OHE(2)), and 2- and 4-hydroxyestrones (2- and 4-OHE(1)) induce morphological transformation in Syrian hamster embryo (SHE) fibroblasts, and the transforming abilities vary as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) vertical line E(2), E(1). To examine the involvement of catechol estrogens in the initiation of hormonal carcinogenesis, we studied the ability of E(2), E(1) and their catechol estrogens to induce DNA adducts in SHE cells by using a (32)P-post-labeling assay. DNA adducts were detected in cells treated with each of all the catechol estrogens at concentrations of 10 microg/ml for 1 h and more. 2- or 4-OHE(2) formed a single DNA adduct, which was chromatographically distinct from each other. In contrast, 2- or 4-OHE(1) produced one major and one minor adduct, and the two adducts formed by each catechol estrogen exhibited identical mobilities on the chromatograms. Neither E(2) nor E(1) at concentrations up to 30 microg/ml induced DNA adducts. The abilities of the estrogens to induce DNA adducts were ranked as follows: 4-OHE(1) > 2-OHE(1) > 4-OHE(2) > 2-OHE(2) > > E(2), E(1), which corresponds well to the transforming and carcinogenic abilities of the estrogens. In addition, the level of DNA adducts induced by the catechol estrogens was markedly decreased by co-treatment of cells with the antioxidant L-ascorbic acid. The results indicate the possible involvement of oxidative metabolites of catechol estrogens of E(2) and E(1) in the initiation of endogenous estrogen-induced carcinogenesis. Topics: Animals; Antioxidants; Ascorbic Acid; Cell Survival; Cell Transformation, Neoplastic; Cricetinae; DNA Adducts; Estradiol; Estrogens, Catechol; Fibroblasts; Hydroxyestrones; Mesocricetus | 2001 |
Glucuronidation of catechol estrogens by expressed human UDP-glucuronosyltransferases (UGTs) 1A1, 1A3, and 2B7.
Catechol estrogens are major estrogen metabolites in mammals and are the most potent naturally occurring inhibitors of catecholamine metabolism. These estrogen compounds have been implicated in carcinogenic activity and the 4/2-hydroxyestradiol concentration has been shown to be elevated in neoplastic human mammary tissue compared to normal human breast tissue. Three human liver UDP-glucuronosyltransferases, UGT2B7, UGT1A1, and UGT1A3, have been shown to catalyze the glucuronidation of catechol estrogens and lead to their enhanced elimination via urine or bile. The present study was designed to study the kinetic interaction of expressed human UGT2B7(Y) or (H), UGT1A1, and UGT1A3 toward 2- and 4-hydroxycatechol estrogens. cDNAs encoding UGT2B7(Y) or (H), UGT1A1, and UGT1A3 were expressed in HK293 cells, and cell homogenates or membrane preparations were used to determine their glucuronidation ability. UGT2B7(Y) reacted with higher efficiency toward 4-hydroxyestrogenic catechols, whereas UGT1A1 and UGT1A3 showed higher activities toward 2-hydroxyestrogens. UGT2B7(H) catalyzed estrogen catechol glucuronidation with efficiencies similar to UGT2B7(Y). Flunitrazepam (FNZ), a competitive inhibitor of morphine glucuronidation in hepatic microsomes, competitively inhibited catechol estrogen glucuronidation catalyzed by UGT2B7(Y), UGT1A1, and UGT1A3. Buprenorphine, an opioid substrate that reacts at high efficiency with each of these UGTs, was also studied. FNZ competitively inhibited buprenorphine glucuronidation with UGT1A1 and UGT2B7 but had no inhibitory activity toward UGT1A3. This suggests that buprenorphine and 2-hydroxycatechol estrogens react with separate active sites of UGT1A3. A catecholamine, norepinephrine, did not inhibit UGT2B7(Y)-, UGT1A1-, and UGT1A3-catalyzed glucuronidation of catechol estrogens. These results also suggest that drug-endobiotic interactions are possible in humans and may have implication in carcinogenesis. Topics: Estradiol; Estrogens, Catechol; Flunitrazepam; Glucuronates; Glucuronosyltransferase; Humans; Hydroxyestrones; Isoenzymes; Norepinephrine | 1998 |
Effects of 2-hydroxyestradiol-17 beta, 2-hydroxyestradiol-17 alpha, and 4-hydroxyestrone on the preovulatory luteinizing hormone surge in the rat: agonist and antagonist actions.
Four-day cycling rats equipped with intracardiac catheters were injected with 2-hydroxyestradiol-17 beta (2OHE2-17 beta) at 0800, 0900, 1000, and 1200 h on the morning of proestrus. The administration at 0800 and 0900 h resulted in abolition of the afternoon preovulatory LH surge in virtually all animals. Injections given at 1000 and 1200 h were ineffective in this respect. The isomeric catechol estrogen 4-hydroxyestrone effectively inhibited the LH surge when given at 0900 h, but not if injected at 1000 or 1200 h. In contrast, the nonestrogenic 2-hydroxyestradiol-17 alpha was effective in blocking the LH surge when given at 0900 or 1000 h. Rats treated with 2OHE2-17 beta at 1000 h responded normally to exogenous LHRH administration in the afternoon, indicating that the action of 2OHE2-17 beta is at the hypothalamic level. 2OHE2-17 beta and 4-hydroxyestrone, which are potent estrogens, may act in this instance first as estrogen agonists, advancing the "time window" when their catechol antagonist properties in blocking the LH surge can be functional. The nonuterotropic 2-hydroxyestradiol-17 alpha and 2-hydroxyestrone act solely as catechol estrogens and inhibit the preovulatory LH surge if administered at a time when they be present during this physiological window, which is thought to involve events at the estrogen-catecholaminergic interphase. Topics: Analysis of Variance; Animals; Estradiol; Estrone; Estrus; Female; Hydroxyestrones; Luteinizing Hormone; Pregnancy; Proestrus; Rats; Rats, Inbred Strains; Time Factors | 1984 |
Separation of steroidal estrogens and their major unconjugated metabolites by high performance liquid chromatography.
A high performance liquid chromatographic method is described for the rapid, non-destructive separation of a number of physiologically important steroidal estrogens, including the labile catechol estrogens. This procedures uses a "Diol" column and gradient elution to separate in a single run, estrogens ranging from 2-methoxy estrone, one of the least polar C18 steroids, to estriol, one of the most polar. Simpler, isocratic conditions, are provided for the separation of estrogens of similar polarity. A semi-preparative column of similar composition was used for the purification of samples containing 25 to 50 mg of individual steroids. Topics: Chromatography, High Pressure Liquid; Estradiol; Estrogens; Estrogens, Catechol; Hydroxyestrones | 1982 |
A comparison of the effects of 4-catechol oestrogens and 2-pyrogallol oestrogens on prostaglandin synthesis by the rat and human uterus.
Topics: 6-Ketoprostaglandin F1 alpha; Animals; Estradiol; Estrogens, Catechol; Estrone; Female; Humans; Hydroxyestrones; Prostaglandins; Prostaglandins E; Prostaglandins F; Rats; Uterus | 1981 |
Catechol oestrogens and gonadotrophin secretion in the ewe: affinity for pituitary oestrogen receptors invitro and action on gonadotrophin secretion in vivo.
Topics: Animals; Castration; Dose-Response Relationship, Drug; Estradiol; Estrone; Female; Follicle Stimulating Hormone; Hydroxyestrones; In Vitro Techniques; Luteinizing Hormone; Pituitary Gland; Receptors, Estrogen; Sheep | 1980 |
Formation of 2- and 4-hydroxyestrogens by brain, pituitary, and liver of the human fetus.
When [6,7-3H]estradiol was incubated with tissue homogenates of the brain, the pituitary, and the liver of two human female fetuses, a number of radioactive metabolites more "polar" than the incubated substrate were detected. Among these, the identification of two types of catecholestrogens, i.e. the 2- and 4-hydroxyestrogens, was of major interest. Compared on the basis of wet weight of tissues (250 mg), the conversion of estradiol to 2-hydroxyestrogens (2-hydroxyestradiol and 2-hydroxyestrone) was 0.8% in the frontal cortex, 1.0% in the hypothalamus, 2.1% in the pituitary, and 7.8% in the liver. For the first time, the formation of 4-hydroxyestrogens was demonstrated. The percentages of incubated estradiol hydroxylated at C-atom 4 (4-hydroxyestradiol and 4-hydroxyestrone) were 0.5 in the cortex, 0.4% in the hypothalamus, .1% in the pituitary, and 0.5% in the liver. The results show that fetal brain and pituitary tissue can hydroxylate estradiol in positions 2 and 4 to a similar extent, whereas in the liver, about 15 times more 2-hydroxy than 4-hydroxy compounds are formed. Moreover, the 2-hydroxylating capacity of the liver is definitely greater than that of the brain, whereas the 4-hydroxylating capacity is about the same as that of the brain. Topics: Brain; Estradiol; Estrogens, Catechol; Female; Humans; Hydroxyestrones; Hydroxylation; Liver; Pituitary Gland | 1978 |