2-hexenal--z-isomer has been researched along with 4-hydroxy-2-hexenal* in 3 studies
3 other study(ies) available for 2-hexenal--z-isomer and 4-hydroxy-2-hexenal
Article | Year |
---|---|
Oxidation of 4-hydroxy-2-nonenal by succinic semialdehyde dehydrogenase (ALDH5A).
Elevated levels of 4-hydroxy-trans-2-nonenal (HNE) are implicated in the pathogenesis of numerous neurodegenerative disorders. Although well-characterized in the periphery, the mechanisms of detoxification of HNE in the CNS are unclear. HNE is oxidized to a non-toxic metabolite in the rat cerebral cortex by mitochondrial aldehyde dehydrogenases (ALDHs). Two possible ALDH enzymes which might oxidize HNE in CNS mitochondria are ALDH2 and succinic semialdehyde dehydrogenase (SSADH/ALDH5A). It was previously established that hepatic ALDH2 can oxidize HNE. In this work, we tested the hypothesis that SSADH oxidizes HNE. SSADH is critical in the detoxification of the GABA metabolite, succinic semialdehyde (SSA). Recombinant rat SSADH oxidized HNE and other alpha,beta-unsaturated aldehydes. Inhibition and competition studies in rat brain mitochondria showed that SSADH was the predominant oxidizing enzyme for HNE but only contributed a portion of the total oxidizing activity in liver mitochondria. In vivo administration of diethyldithiocarbamate (DEDC) effectively inhibited (86%) ALDH2 activity but not HNE oxidation in liver mitochondria. The data suggest that a relationship between the detoxification of SSA and the neurotoxic aldehyde HNE exists in the CNS. Furthermore, these studies show that multiple hepatic aldehyde dehydrogenases are able to oxidize HNE. Topics: Aldehyde Dehydrogenase; Aldehyde Dehydrogenase, Mitochondrial; Aldehyde Oxidoreductases; Aldehydes; Animals; Benomyl; Brain Chemistry; Ditiocarb; Enzyme Inhibitors; gamma-Aminobutyric Acid; Male; Mitochondria; Mitochondria, Liver; Oxidation-Reduction; Rats; Rats, Sprague-Dawley; Succinate-Semialdehyde Dehydrogenase | 2003 |
Effects of the pyrrolizidine alkaloid senecionine and the alkenals trans-4-OH-hexenal and trans-2-hexenal on intracellular calcium compartmentation in isolated hepatocytes.
The pyrrolizidine alkaloid senecionine has been shown to produce an increase in cytosolic free Ca2+ concentration in isolated hepatocytes that correlated with an increase in cellular toxicity. The cytotoxicity was greater in the absence of extracellular Ca2+ than in its presence, suggesting that alterations in intracellular Ca2+ distribution, and not an influx of extracellular Ca2+, were responsible for the senecionine-induced hepatotoxicity. The effect of senecionine, as well as the effects of trans-4-OH-2-hexenal (t-4HH), a microsomal metabolite of senecionine, and a related alkenal, trans-2-hexenal, on the sequestration of Ca2+ in mitochondrial and extramitochondrial compartments were examined in isolated hepatocytes. Each of the test compounds elicited a decrease in the available extramitochondrial Ca2+ stores that was inhibited by pretreatment with the thiol group reducing agent, dithiothreitol. Senecionine and t-4HH decreased the level of Ca2+ sequestered in the mitochondrial compartment of hepatocytes. The presence of a pyridine nucleotide reducing agent, beta-hydroxybutyrate, inhibited this reduction. These results suggest that both senecionine and t-4HH inhibit the sequestration of Ca2+ in extramitochondrial and mitochondrial compartments possibly by inactivating free sulfhydryl groups and oxidizing pyridine nucleotides respectively. Topics: Aldehydes; Animals; Antineoplastic Agents, Phytogenic; Calcimycin; Calcium; Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone; Dithiothreitol; In Vitro Techniques; Liver; Male; Pyrrolizidine Alkaloids; Rats; Rats, Inbred Strains | 1989 |
In vitro effects of trans-4-hydroxy-2-alkenals on mouse liver cytochrome P-450.
Under in vitro conditions, trans-4-hydroxy-2-hexenal (t-4HH), trans-4-hydroxy-2-nonenal (t-4-HN) and trans-2-hexenal (t-2H) significantly reduced the levels of mouse liver microsomal cytochrome P-450. Incubation of trans-4-hydroxy-alkenals, under anaerobic conditions in the absence of an NADPH-generating system indicated that these compounds were converting cytochrome P-450 to cytochrome P-420. Prior activation by the mixed function oxidase system was not required for trans-4-hydroxy-alkenals to alter cytochrome P-450 concentrations. trans-4-Hydroxy-alkenals and non-hydroxylated alpha,beta-unsaturated aldehydes may be exerting their effects on cytochrome P-450 by binding to sulfhydryl groups in a similar manner as reported for sulfhydryl reagents such as p-chloromercuriphenylsulfonic acid and p-chloromercuribenzoate. Topics: Aldehydes; Animals; Cytochrome P-450 Enzyme System; Cytochromes; Male; Mice; Mice, Inbred BALB C; Microsomes, Liver; NADP; Structure-Activity Relationship | 1987 |