2-hexenal--z-isomer and 3-hexenal

2-hexenal--z-isomer has been researched along with 3-hexenal* in 5 studies

Other Studies

5 other study(ies) available for 2-hexenal--z-isomer and 3-hexenal

ArticleYear
Characterization of a new (Z)-3:(E)-2-hexenal isomerase from tea (Camellia sinensis) involved in the conversion of (Z)-3-hexenal to (E)-2-hexenal.
    Food chemistry, 2022, Jul-30, Volume: 383

    Two major green leaf volatiles (GLVs) in tea that contribute greatly to tea aroma, particularly the green odor, are (E)-2-hexenal and (Z)-3-hexenal. Until now, their formation and related mechanisms during tea manufacture have remained unclear. Our data showed that the contents of (E)-2-hexenal and (Z)-3-hexenal increased more than 1000-fold after live tea leaves were torn. Subsequently, a new (Z)-3:(E)-2-hexenal isomerase (CsHI) was identified in Camellia sinensis. CsHI irreversibly catalyzed the conversion of (Z)-3-hexenal to (E)-2-hexenal. Abiotic stresses including low temperature, dehydration, and mechanical wounding, did not influence the (E)-2-hexenal content in intact tea leaves during withering, but regulated the proportions of (Z)-3-hexenal and (E)-2-hexenal in torn leaves by modulating CsHI at the transcript level. For the first time, this work reveals the formation of (E)-2-hexenal during tea processing and suggests that CsHI may play a pivotal role in tea flavor development as well as in plant defense against abiotic stresses.

    Topics: Aldehydes; Camellia sinensis; Isomerases; Plant Leaves; Tea

2022
Effects of trans-2-hexenal and cis-3-hexenal on post-harvest strawberry.
    Scientific reports, 2019, 07-12, Volume: 9, Issue:1

    Green leaf volatiles are emitted by green plants and induce defence responses. Those with antifungal activities in plants may replace chemicals as natural post-harvest treatments. We investigated the postharvest treatment of strawberry with trans-2-hexenal and cis-3-hexenal and observed a decrease in the mould infection rate. To determine the volatiles' functions, we conducted a component analysis of the volatiles released from trans-2-hexenal-treated strawberry and analysed gene expression. Several acetates, which were expected to be metabolites of trans-2-hexenal in fruit, were released from treated strawberry; however, these acetates did not inhibit fungal growth. The gene expression analysis suggested that postharvest strawberries were not protected by jasmonic acid-mediated signalling but by another stress-related protein. Harvested strawberries experience stress induced by harvest-related injuries and are unable to perform photosynthesis, which might result in different responses than in normal plants.

    Topics: Aldehydes; Antifungal Agents; Botrytis; Cyclopentanes; Food Microbiology; Fragaria; Fruit; Gene Expression Regulation, Plant; Oxylipins; Volatile Organic Compounds

2019
Physiological, micro-morphological and metabolomic analysis of grapevine (Vitis vinifera L.) leaf of plants under water stress.
    Plant physiology and biochemistry : PPB, 2018, Volume: 130

    Grapes are one of the most important fruits because of their economic and nutritional benefits, and grapevines are widely cultivated in arid and semi-arid areas. Therefore, it is critical to study the mechanism by which grapevines respond to water stress. In this research, micro-morphological and metabolomic analyses were conducted to evaluate the effects of water stress on stomatal morphology and volatile compounds extracted from the leaves of grapevine plants. There were two treatments: well-watered plants (watered daily) and drought-stressed plants (no irrigation). Plant weights were recorded, and the well-watered plants were irrigated daily to replace the water lost to evapotranspiration. The water status of the grapevines was determined according to their relative water content. The changes in proline content, hydrogen peroxide content, lipid peroxidation and antioxidant activities, as well as those of photosynthetic parameters and chlorophyll fluorescence, were monitored as markers of water stress. The microscopic changes in stomatal behavior were observed using a scanning electron microscope. A total of 12 secondary volatile compounds, including aldehydes, ketones and alcohols, were detected in the grapevine leaves. Among them, (E)-2-hexenal and 3-hexenal showed a significant increase after water stress. Multivariate statistical analysis revealed that the levels of 3-hexenal and (E)-2-hexenal were closely related to the changes in proline, hydrogen peroxide (H

    Topics: Aldehydes; Chlorophyll; Dehydration; Fatty Acids, Volatile; Metabolomics; Photosynthesis; Plant Leaves; Plant Stomata; Vitis

2018
α-Ketol linolenic acid (KODA) application affects endogenous abscisic acid, jasmonic acid and aromatic volatiles in grapes infected by a pathogen (Glomerella cingulata).
    Journal of plant physiology, 2016, Mar-15, Volume: 192

    Effects of α-ketol linolenic acid (KODA) application on endogenous abscisic acid (ABA), jasmonic acid (JA), and aromatic volatiles were investigated in 'Kyoho' grapes (Vitis labrusca×Vitis vinifera) infected by a pathogen (Glomerella cingulata). The expressions of 9-cis-epoxycarotenoid dioxygenase (VvNCED1), ABA 8'-hydroxylase (VvCYP707A1), lipoxygenase (VvLOX), and allene oxide synthase (VvAOS) were also examined. The grape berries were dipped in 0.1mM KODA solution before inoculation with the pathogen and stored at 25°C for 12 days. The development of infection was significantly suppressed upon KODA treatment. Endogenous ABA, JA and phaseic acid (PA) were induced in inoculated berries. KODA application before inoculation increased endogenous ABA, PA and JA through the activation of VvNCED1, VvCYP707A1 and VvAOS genes, respectively. In addition, terpenes, methyl salicylate (Me-SA) and C6-aldehydes such as (E)-2-hexenal and cis-3-hexenal associated with fungal resistance also increased in KODA-treated berries during storage. These results suggest that the synergistic effect of JA, ABA, and some aromatic volatiles induced by KODA application may provide resistance to pathogen infection in grape berries.

    Topics: Abscisic Acid; Aldehydes; alpha-Linolenic Acid; Antioxidants; Arabidopsis Proteins; Cyclopentanes; Cytochrome P-450 Enzyme System; Dioxygenases; Fruit; Intramolecular Oxidoreductases; Lipoxygenase; Oxylipins; Phyllachorales; Plant Diseases; Plant Growth Regulators; Plant Proteins; Signal Transduction; Vitis

2016
Free and bound volatile chemicals in mulberry (Morus atropurpurea Roxb.).
    Journal of food science, 2015, Volume: 80, Issue:5

    Mulberry (Morus atropurpurea Roxb.) is a popular and desirable fruit that is widely cultivated in China. Despite its popularity, the free volatile chemicals and glycosidically bound volatiles (GBVs) of mulberry have been minimally studied. To this end, we have investigated these compounds in 4 mulberry cultivars via solid phase extraction (SPE) and headspace solid phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS). A total of 55 free volatile chemicals and 57 GBVs were identified and quantified. In 3 of the cultivars ("YFS," "T10," and "D10"), the GBVs were found in higher amounts than their free counterparts, corresponding to a ratio of 1.2 to 1.8. The characteristic aromas were determined by their odor activity values (OAVs) and by generating an aroma series (AS). A total of 20 volatile compounds had OAVs ≥ 1.0. In particular, ethyl butanoate, hexanal, (Z)-3-hexenal (E)-2-hexenal, (E)-2-nonenal, and eugenol had relatively high OAVs and were considered to be the key aromas contributing to the mulberry flavor. Consequently, mulberry was characterized by a variety of herbaceous scents having a background of sweet, spicy, fruity, and floral notes. The free volatiles exhibited strong herbaceous notes, whereas the GBVs were responsible for the sweet and spicy qualities of the fruit. Based on our results, 2 cultivars ("YFS" and "D10") are proposed to be good candidates suitable for the further development of mulberry-based food products due to their complex and desirable aromas.

    Topics: Aldehydes; Butyric Acid; China; Fruit; Gas Chromatography-Mass Spectrometry; Humans; Morus; Odorants; Solid Phase Microextraction; Taste; Volatile Organic Compounds

2015