2-deoxymaltose has been researched along with maltal* in 3 studies
3 other study(ies) available for 2-deoxymaltose and maltal
Article | Year |
---|---|
Maltal binding mechanism and a role of the mobile loop of soybean beta-amylase.
The inhibition of hydration of maltal (alpha-D-glucopyranosyl-(1-->4)-2-deoxy-D-glucal) catalyzed by soybean beta-amylase with 4-O-alpha-D-glucopyranosyl-(1-->4)-1-deoxynojirimycin (GDN) was investigated at 25 degrees C and at pH 5.4. As the concentrations of GDN used were comparable to that of the enzyme, Henderson's treatment was applied to this system. It was found that two maltal molecules bind to the enzyme according to a random mechanism and GDN inhibits the hydration of maltal competitively at subsites 1 and 2, and noncompetitively at the other site. On the basis of this result, it was inferred that the role of the mobile loop of this enzyme is to create a convenient catalytic environment for the hydration, and the closing of the active site by the mobile loop is induced by the binding of maltal. Topics: 1-Deoxynojirimycin; beta-Amylase; Binding Sites; Glycine max; Kinetics; Magnetic Resonance Spectroscopy; Maltose; Optical Rotation | 1996 |
Mechanism of maltal hydration catalyzed by beta-amylase: role of protein structure in controlling the steric outcome of reactions catalyzed by a glycosylase.
Crystalline (monomeric) soybean and (tetrameric) sweet potato beta-amylase were shown to catalyze the cis hydration of maltal (alpha-D-glucopyranosyl-2-deoxy-D-arabino-hex-1-enitol) to form beta-2-deoxymaltose. As reported earlier with the sweet potato enzyme, maltal hydration in D2O by soybean beta-amylase was found to exhibit an unusually large solvent deuterium kinetic isotope effect (VH/VD = 6.5), a reaction rate linearly dependent on the mole fraction of deuterium, and 2-deoxy-[2(a)-2H]maltose as product. These results indicate (for each beta-amylase) that protonation is the rate-limiting step in a reaction involving a nearly symmetric one-proton transition state and that maltal is specifically protonated from above the double bond. This is a different stereochemistry than reported for starch hydrolysis. With the hydration catalyzed in H2O and analyzed by gas-liquid chromatography, both sweet potato and soybean beta-amylase were found to convert maltal to the beta-anomer of 2-deoxymaltose. That maltal undergoes cis hydration provides evidence in support of a general-acid-catalyzed, carbonium ion mediated reaction. Of fundamental significance is that beta-amylase protonates maltal from a direction opposite that assumed for protonating starch, yet creates products of the same anomeric configuration from both. Such stereochemical dichotomy argues for the overriding role of protein structures in dictating the steric outcome of reactions catalyzed by a glycosylase, by limiting the approach and orientation of water or other acceptors to the reaction center. Topics: beta-Amylase; Catalysis; Chromatography, Gas; Deuterium; Glycine max; Isotopes; Kinetics; Magnetic Resonance Spectroscopy; Maltose; Protein Conformation; Solanum tuberosum; Water | 1991 |
Catalytic flexibility of glycosylases. The hydration of maltal by beta-amylase to form 2-deoxymaltose.
Crystalline, alpha-glucosidase-free sweet potato beta-amylase was found to catalyze hydration of the enolic bond of maltal (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucal) to form 2-deoxymaltose (alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-glucose). The reaction at pH 5.0 showed Vmax 0.082 mumol/min/mg and km 94.5 mM. An exceptionally large solvent deuterium isotope effect, VH/VD = 8, was observed from pH(pD) 4.2 to 5.4; and at pH(pD) 5.0 the effect was found to be directly related to the mole fraction of 2H. The hydration product, isolated from a beta-amylase/maltal digest in acetate-d4/D2O buffer (pD 5.4) was identified through its 1H NMR spectrum as alpha-D-glucopyranosyl-(1----4)-2-deoxy-D-[2(a)-2H]glucose. beta-Amylase in 2H2O thus catalyzes deuteration of the double bond of maltal from a direction opposite that assumed for protonation of the glycosidic oxygen atoms of starch chains and maltosaccharides. This finding confirms the functional flexibility of the enzyme's catalytic groups first demonstrated in studies of the reactions catalyzed with alpha- and beta-maltosyl fluoride (Hehre, E. J., Brewer, C. F., and Genghof, D. S. (1979) J. Biol. Chem. 254, 5942-5950). A possible mechanism of the maltal hydration by beta-amylase involves protonation of substrate from above as the first and rate-limiting step, followed by formation of a transient carbonium ion-enzyme intermediate. Although other possible mechanisms cannot be ruled out, it is clear that this hydration reaction differs from reactions catalyzed with amylaceous substrates and with alpha- and beta-maltosyl fluoride. The ability of beta-amylase to catalyze different types of reactions with different substrates is discussed with respect to observations with other enzymes that, likewise, strongly support the view (Hehre et al.) that the catalytic groups of glycosylases in general may be functionally flexible beyond requirements of the principle of microscopic reversibility. Topics: Amylases; beta-Amylase; Carbohydrate Conformation; Deuterium; Hydrogen-Ion Concentration; Kinetics; Magnetic Resonance Spectroscopy; Maltose; Plant Proteins; Substrate Specificity | 1986 |