2-cyano-3-12-dioxooleana-1-9(11)-dien-28-oic-acid-ethyl-amide and bardoxolone-methyl

2-cyano-3-12-dioxooleana-1-9(11)-dien-28-oic-acid-ethyl-amide has been researched along with bardoxolone-methyl* in 6 studies

Other Studies

6 other study(ies) available for 2-cyano-3-12-dioxooleana-1-9(11)-dien-28-oic-acid-ethyl-amide and bardoxolone-methyl

ArticleYear
Synthesis and biological evaluation of amino acid methyl ester conjugates of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid against the production of nitric oxide (NO).
    Bioorganic & medicinal chemistry letters, 2014, Jan-15, Volume: 24, Issue:2

    2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO, 2) was condensed with various amino acid methyl esters at the C-28 carboxylic acid. The new amide conjugates were evaluated for their inhibition of nitric oxide (NO) production in RAW264.7 cells stimulated with interferon-γ (IFNγ). Of these new compounds, CDDO conjugates with alanine, valine, and serine are nearly equipotent to CDDO-ethyl amide (4), a triterpenoid with promising biological activity in numerous disease models. Some of these conjugates also induce the in vitro expression of heme oxygenase-1, and inhibit the proliferation of Panc-1343 pancreatic cells.

    Topics: Amino Acids; Animals; Cell Line, Tumor; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Humans; Mice; Nitric Oxide; Oleanolic Acid

2014
Bardoxolone methyl analogs RTA 405 and dh404 are well tolerated and exhibit efficacy in rodent models of Type 2 diabetes and obesity.
    American journal of physiology. Renal physiology, 2013, Jun-15, Volume: 304, Issue:12

    Bardoxolone methyl and related triterpenoids are well tolerated and efficacious in numerous animal models potentially relevant to patients with Type 2 diabetes and chronic kidney disease. These agents enhance glucose control and regulate lipid accumulation in rodent models of diabetes and obesity, and improve renal function, reduce inflammation, and prevent structural injury in models of renal disease. However, a recent study in Zucker diabetic fatty (ZDF) rats noted poor tolerability with the bardoxolone methyl analog RTA 405 within 1 mo after treatment initiation, although this study was confounded in part by the use of an impure RTA 405 batch. To investigate these discordant observations, the present studies were conducted to further characterize triterpenoids in rodent models of diabetes and obesity. A follow-up study was conducted in ZDF rats with two related triterpenoids (RTA 405 and dh404) for 1.5 mo. Consistent with previous rodent experience, and in contrast to the more recent ZDF report, ZDF rats administered RTA 405 or dh404 exhibited no adverse clinical signs, had laboratory values similar to controls, and exhibited no evidence of adverse liver or kidney histopathology. Additionally, RTA 405 was well tolerated in streptozotocin-induced Type 1 diabetic rats and high-fat-diet-induced obese mice. The present results are consistent with the overall published body of data obtained with triterpenoids and provide further evidence that these molecules are well tolerated without adverse effects on hepatobiliary or renal function in rodent models of diabetes and obesity.

    Topics: Animals; Creatinine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Fats; Eating; Glucose; Kidney; Lipid Metabolism; Liver; Male; Mice; Mice, Inbred C57BL; Mice, Obese; Obesity; Oleanolic Acid; Rats; Rats, Zucker

2013
Analogs of bardoxolone methyl worsen diabetic nephropathy in rats with additional adverse effects.
    American journal of physiology. Renal physiology, 2013, Mar-15, Volume: 304, Issue:6

    Bardoxolone methyl is an antioxidant inflammation modulator acting through induction of Keap1-Nrf2 pathway. Results from a recent phase IIb clinical trial reported that bardoxolone methyl was associated with improvement in the estimated glomerular filtration rate in patients with advanced chronic kidney disease and Type 2 diabetes. However, increases in albuminuria, serum transaminase, and frequency of adverse events were noted. We studied the effect of 3-mo treatment with RTA 405, a synthetic triterpenoid analog of bardoxolone methyl in Zucker diabetic fatty rats with overt Type 2 diabetes. Rats were treated from 3 mo of age with vehicle, RTA 405, ramipril, or RTA 405 plus ramipril. RTA 405 caused severe changes in food intake and diuresis with decline in body weight, worsening of dyslipidemia, and increase in blood pressure. Early elevation in serum transaminase was followed by liver injury. RTA 405 worsened proteinuria, glomerulosclerosis, and tubular damage. Ramipril was renoprotective, but when given with RTA 405 it was not able to limit its worsening effects. These data could be due to degradation products in the drug substance used, as disclosed by the company once the study was concluded. To overcome such a drawback, the company offered to test dh404, a variant of RTA 405, in Zucker diabetic fatty rats. The dh404 did not display beneficial effects on proteinuria, glomerulosclerosis, and interstitial inflammation. Rather, kidneys from three rats receiving dh404 showed the presence of a granulomatous and inflammatory process reminiscent of a pseudotumor. Altogether these data raise serious concerns on the use of bardoxolone analogs in Type 2 diabetic nephropathy.

    Topics: Angiotensin-Converting Enzyme Inhibitors; Animals; Blood Pressure; Body Weight; Chromatography, Liquid; Diabetic Nephropathies; Disease Models, Animal; Diuresis; Drinking; Hemodynamics; Kidney; Liver; Male; Mass Spectrometry; Oleanolic Acid; Ramipril; Rats; Rats, Zucker; Renal Circulation; Triterpenes

2013
Synthetic triterpenoids prolong survival in a transgenic mouse model of pancreatic cancer.
    Cancer prevention research (Philadelphia, Pa.), 2010, Volume: 3, Issue:11

    Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and is nearly always fatal. Whereas early detection offers the most promising approach for reducing the mortality of this disease, there is still a need to develop effective drugs for the prevention and treatment of pancreatic cancer. We tested two promising classes of noncytotoxic drugs, synthetic oleanane triterpenoids and rexinoids, for the prevention of carcinogenesis in the highly relevant LSL-Kras(G12D/+);LSL-Trp53(R127H/+);Pdx-1-Cre (KPC) mouse model of pancreatic cancer. KPC transgenic mice closely recapitulate the genetic mutations, clinical symptoms, and histopathology found in human pancreatic cancer. Beginning at 4 weeks of age, mice were fed powdered control diet or a diet containing the triterpenoids CDDO-methyl ester (CDDO-Me) or CDDO-ethyl amide, the rexinoid LG100268 (LG268), or the combination, until the mice displayed overt symptoms of pancreatic cancer. CDDO-Me, LG268, the combination of CDDO-Me and LG268, and the combination of CDDO-ethyl amide and LG268, all significantly (P < 0.05) increased survival in the KPC mice by 3 to 4 weeks. Recent studies have shown that gemcitabine, the current standard of care for human pancreatic cancer, does not extend survival in KPC mice. In cell lines developed from the KPC mice, the triterpenoids directly interact with both signal transducer and activator of transcription 3 and IκB kinase (IKK) to decrease constitutive interleukin-6 secretion, inhibit constitutive signal transducer and activator of transcription 3 phosphorylation, and block the degradation of IκBα when challenged with tumor necrosis factor α. These results suggest that oleanane triterpenoids and rexinoids have the potential to prevent pancreatic cancer.

    Topics: Animals; Antineoplastic Agents; Blotting, Western; Disease Models, Animal; Mice; Mice, Transgenic; Nicotinic Acids; Oleanolic Acid; Pancreatic Neoplasms; Signal Transduction; Tetrahydronaphthalenes

2010
Triterpenoids CDDO-methyl ester or CDDO-ethyl amide and rexinoids LG100268 or NRX194204 for prevention and treatment of lung cancer in mice.
    Cancer prevention research (Philadelphia, Pa.), 2009, Volume: 2, Issue:12

    We tested members of two noncytotoxic classes of drugs, synthetic oleanane triterpenoids and rexinoids, both as individual agents and in combination, for the prevention and treatment of carcinogenesis in a highly relevant animal model of lung cancer. Lung adenocarcinomas were induced in A/J mice by injection of the carcinogen vinyl carbamate. Mice were fed drugs in diet, beginning 1 week after the carcinogen challenge for prevention or 8 weeks later for treatment. The number, size, and severity of tumors in the lungs were then evaluated. In the prevention studies, the triterpenoids CDDO-ethyl amide and CDDO-methyl ester reduced the average tumor burden (ATB) in the lungs 86% to 92%, respectively, compared with the controls, and the rexinoid LG100268 (268) reduced ATB by 50%. The combination of CDDO-ethyl amide and 268 reduced ATB by 93%. We show for the first time that these drugs also were highly effective for treatment of experimental lung cancer, and all triterpenoid and rexinoid combinations reduced ATB 85% to 87% compared with the control group. The triterpenoids also potently inhibited proliferation of VC1 mouse lung carcinoma cells and directly interacted with key regulatory proteins in these cells. In contrast, the rexinoids had little antiproliferative activity in VC1 cells but were potent inhibitors of the toll-like receptor pathway in macrophage-like cells. Triterpenoids and rexinoids are multifunctional, well-tolerated drugs that target different signaling pathways and are thus highly effective for prevention and treatment of experimental lung cancer.

    Topics: Adenocarcinoma; Animals; Cell Proliferation; Fatty Acids, Unsaturated; Female; Ligands; Lung Neoplasms; Macrophages; Mice; Mice, Inbred A; Nicotinic Acids; Oleanolic Acid; Rats; Tetrahydronaphthalenes; Urethane

2009
The synthetic triterpenoids CDDO-methyl ester and CDDO-ethyl amide prevent lung cancer induced by vinyl carbamate in A/J mice.
    Cancer research, 2007, Mar-15, Volume: 67, Issue:6

    We report the first use of new synthetic triterpenoids to prevent lung cancer in experimental animals. Female A/J mice were treated with the mutagenic carcinogen vinyl carbamate, which induces adenocarcinoma of the lung in all animals within 16 weeks. If mice were fed either the methyl ester or the ethyl amide derivative of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO-ME and CDDO-EA, respectively), beginning 1 week after dosing with carcinogen, the number, size, and severity of lung carcinomas were markedly reduced. The mechanisms of action of CDDO-ME and CDDO-EA that are germane to these in vivo findings are the following results shown here in cell culture: (a) suppression of the ability of IFN-gamma to induce de novo formation of nitric oxide synthase in a macrophage-like cell line RAW264.7, (b) induction of heme oxygenase-1 in these RAW cells, and (c) suppression of phosphorylation of the transcription factor signal transducers and activators of transcription 3 as well as induction of apoptosis in human lung cancer cell lines.

    Topics: Adenocarcinoma; Animals; Anticarcinogenic Agents; Apoptosis; Cell Line, Tumor; Humans; Lung; Lung Neoplasms; Mice; Mice, Inbred A; Oleanolic Acid; Phosphorylation; STAT3 Transcription Factor; Urethane

2007