2-chloro-5-hydroxyphenylglycine and 3-nitrotyrosine

2-chloro-5-hydroxyphenylglycine has been researched along with 3-nitrotyrosine* in 1 studies

Other Studies

1 other study(ies) available for 2-chloro-5-hydroxyphenylglycine and 3-nitrotyrosine

ArticleYear
Nitrative stress in cerebral endothelium is mediated by mGluR5 in hyperhomocysteinemia.
    Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 2012, Volume: 32, Issue:5

    Hyperhomocysteinemia (HHcy) disrupts nitric oxide (NO) signaling and increases nitrative stress in cerebral microvascular endothelial cells (CMVECs). This is mediated, in part, by protein nitrotyrosinylation (3-nitrotyrosine; 3-NT) though the mechanisms by which extracellular homocysteine (Hcy) generates intracellular 3-NT are unknown. Using a murine model of mild HHcy (cbs(+/-) mouse), we show that 3-NT is significantly elevated in cerebral microvessels with concomitant reductions in serum NO bioavailability as compared with wild-type littermate controls (cbs(+/+)). Directed pharmacology identified a receptor-dependent mechanism for 3-NT formation in CMVECs. Homocysteine increased expression of inducible NO synthase (iNOS) and formation of 3-NT, both of which were blocked by inhibition of metabotropic glutamate receptor-5 (mGluR5) with the specific antagonist 2-methyl-6-(phenylethynyl) pyridine hydrochloride. Activation of mGluR5 is both sufficient and necessary to drive the nitrative stress because direct activation using the mGluR5-specific agonist (RS)-2-chloro-5-hydroxyphenylglycine also increased iNOS expression and 3-NT formation while knockdown of mGluR5 receptor expression by short hairpin RNA (shRNA) blocked their increase in response to Hcy. Nitric oxide derived from iNOS was required for Hcy-mediated formation of 3-NT because the effect was blocked by 1400W. These results provide the first evidence for a receptor-dependent process that explains how plasma Hcy levels control intracellular nitrative stress in cerebral microvascular endothelium.

    Topics: Amidines; Animals; Benzylamines; Brain; Endothelium; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Gene Expression Regulation, Enzymologic; Glycine; Homocysteine; Hyperhomocysteinemia; Mice; Mice, Knockout; Nitric Oxide; Nitric Oxide Synthase Type II; Phenylacetates; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Stress, Physiological; Tyrosine

2012