2-chloro-5-hydroxyphenylglycine and 3-4-dihydroxyphenylglycol

2-chloro-5-hydroxyphenylglycine has been researched along with 3-4-dihydroxyphenylglycol* in 13 studies

Other Studies

13 other study(ies) available for 2-chloro-5-hydroxyphenylglycine and 3-4-dihydroxyphenylglycol

ArticleYear
Stimulation-evoked Ca2+ signals in astrocytic processes at hippocampal CA3-CA1 synapses of adult mice are modulated by glutamate and ATP.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2015, Feb-18, Volume: 35, Issue:7

    To date, it has been difficult to reveal physiological Ca(2+) events occurring within the fine astrocytic processes of mature animals. The objective of the study was to explore whether neuronal activity evokes astrocytic Ca(2+) signals at glutamatergic synapses of adult mice. We stimulated the Schaffer collateral/commissural fibers in acute hippocampal slices from adult mice transduced with the genetically encoded Ca(2+) indicator GCaMP5E driven by the glial fibrillary acidic protein promoter. Two-photon imaging revealed global stimulation-evoked astrocytic Ca(2+) signals with distinct latencies, rise rates, and amplitudes in fine processes and somata. Specifically, the Ca(2+) signals in the processes were faster and of higher amplitude than those in the somata. A combination of P2 purinergic and group I/II metabotropic glutamate receptor (mGluR) antagonists reduced the amplitude of the Ca(2+) transients by 30-40% in both astrocytic compartments. Blockage of the mGluRs alone only modestly reduced the magnitude of the stimulation-evoked Ca(2+) signals in processes and failed to affect the somatic Ca(2+) response. Local application of group I or I/II mGluR agonists or adenosine triphosphate (ATP) elicited global astrocytic Ca(2+) signals that mimicked the stimulation-evoked astrocytic Ca(2+) responses. We conclude that stimulation-evoked Ca(2+) signals in astrocytic processes at CA3-CA1 synapses of adult mice (1) differ from those in astrocytic somata and (2) are modulated by glutamate and ATP.

    Topics: Adenosine Triphosphate; Animals; Astrocytes; Calcium; Calcium Signaling; Calmodulin; Dioxolanes; Excitatory Amino Acid Agonists; Excitatory Postsynaptic Potentials; Glial Fibrillary Acidic Protein; Glutamic Acid; Glycine; Hippocampus; Humans; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Transgenic; Phenylacetates; Purines; Synapses; Synapsins; Time Factors

2015
Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex.
    Hippocampus, 2010, Volume: 20, Issue:8

    Activation of metabotropic glutamate receptors (mGluRs) modulates synaptic transmission, whereas the roles of mGluRs in GABAergic transmission in the entorhinal cortex (EC) are elusive. Here, we examined the effects of mGluRs on GABAergic transmission onto the principal neurons in the superficial layers of the EC. Bath application of DHPG, a selective Group I mGluR agonist, increased the frequency and amplitude of spontaneous IPSCs (sIPSCs) whereas application of DCG-IV, an agonist for Group II mGluRs or L-AP4, an agonist for Group III mGluRs failed to change significantly sIPSC frequency and amplitude. Bath application of DHPG failed to change significantly the frequency and amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetradotoxin but significantly reduced the amplitude of IPSCs evoked by extracellular field stimulation or in synaptically connected interneuron-pyramidal neuron pairs in layer III of the EC. DHPG increased the frequency but reduced the amplitude of APs recorded from entorhinal interneurons. Bath application of DHPG generated membrane depolarization and increased the input resistance of GABAergic interneurons. DHPG-mediated depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels which are insensitive to extracellular Cs(+), TEA, 4-AP, and Ba(2+). DHPG-induced facilitation of sIPSCs was mediated by mGluR(5) and required the function of Galphaq but was independent of phospholipase C activity. Elevation of synaptic glutamate concentration by bath application of glutamate transporter inhibitors significantly increased sIPSC frequency and amplitude demonstrating a physiological role of mGluRs in GABAergic transmission. Our results provide a cellular and molecular mechanism to explain the physiological and pathological roles of mGluRs in the EC.

    Topics: Analysis of Variance; Animals; Animals, Newborn; Anticonvulsants; Benzoates; Cardiotonic Agents; Cyclopropanes; Entorhinal Cortex; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Agents; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Methoxyhydroxyphenylglycol; Neural Inhibition; Neurons; Patch-Clamp Techniques; Phenylacetates; Potassium Channel Blockers; Pyrimidines; Rats; Receptors, Metabotropic Glutamate; Signal Transduction; Synaptic Transmission; Tetraethylammonium

2010
Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase.
    The Journal of biological chemistry, 2009, Jun-05, Volume: 284, Issue:23

    Microglial-related factors have been implicated in the signaling cascades that contribute to neuronal cell death in various neurodegenerative disorders. Thus, strategies that reduce microglial activation and associated neurotoxicity may have therapeutic benefit. Group II and III metabotropic glutamate receptors (mGluRs) are expressed in microglia and can modulate microglial activity in primary cell cultures. We demonstrate that the group I receptor member mGluR5 is highly expressed in primary microglial cultures and the BV2 microglial cell line. Activation of mGluR5 using the selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) significantly attenuates microglial activation in response to lipopolysaccharide and interferon-gamma, as indicated by a reduction in the expression of inducible nitric-oxide synthase, production of nitric oxide and tumor necrosis factor-alpha, and intracellular generation of reactive oxygen species. In addition, microglial-induced neurotoxicity is also markedly reduced by CHPG treatment. The anti-inflammatory effects of CHPG are mediated by the mGluR5 receptor, because either a selective mGluR5 antagonist or small interference RNA knockdown attenuated the actions of this drug. CHPG blocked the lipopolysaccharide-induced increase in expression and enzymatic activity of NADPH oxidase. Moreover, the protective effects of CHPG were significantly reduced when the NADPH oxidase subunits p22(phox) or gp91(phox) were knocked down by small interference RNA. These data suggest that mGluR5 represents a novel target for modulating microglial-dependent neuroinflammation, and may have therapeutic relevance for neurological disorders that exhibit microglial-mediated neurodegeneration.

    Topics: Animals; Animals, Newborn; Brain; Cells, Cultured; Cerebral Cortex; Excitatory Amino Acid Agonists; Glycine; Immunohistochemistry; Methoxyhydroxyphenylglycol; Microglia; NADPH Oxidases; Neurotoxins; Nitric Oxide; Phenylacetates; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; RNA Interference

2009
Ketamine, but not propofol, anaesthesia is regulated by metabotropic glutamate 5 receptors.
    British journal of anaesthesia, 2006, Volume: 96, Issue:5

    Group I metabotropic glutamate receptors (mGluRs) have been reported to regulate N-methyl-d-aspartate (NMDA) receptor function in various brain regions. The selective mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine (MPEP) can potentiate NMDA antagonists such as PCP and MK-801-induced behavioural responses. In the present study, the role of group I mGluRs on ketamine- and propofol-induced general anaesthesia was examined.. Mice were pretreated with various doses of the group I mGluR agonist (S)-3,5-dihydroxyphenylglycine (DHPG), selective mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) and mGluR5 antagonist MPEP followed by administration of ketamine (120 mg kg(-1)) or propofol (140 mg kg(-1)) to induce anaesthesia. The duration of loss of righting reflex was recorded.. DHPG and CHPG antagonized and MPEP potentiated ketamine-induced anaesthesia in a dose-dependent manner. CPCCOEt was ineffective. However, propofol-induced anaesthesia was not affected after manipulating mGluR1 and mGluR5 receptors.. mGluR5 receptors play an important role in modulation of anaesthesia induced by ketamine, but not propofol.

    Topics: Anesthetics, Dissociative; Anesthetics, Intravenous; Animals; Chromones; Dose-Response Relationship, Drug; Glycine; Ketamine; Male; Methoxyhydroxyphenylglycol; Mice; Phenylacetates; Propofol; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Reflex

2006
Regulation of nuclear factor kappaB in the hippocampus by group I metabotropic glutamate receptors.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, May-03, Volume: 26, Issue:18

    An increasing amount of evidence suggests that the family of nuclear factor kappaB (NF-kappaB) transcription factors plays an important role in synaptic plasticity and long-term memory formation. The present study investigated the regulation of NF-kappaB family members p50, p65/RelA, and c-Rel in the hippocampus in response to metabotropic glutamate receptor (mGluR) signaling. Activation of group I metabotropic glutamate receptors (GpI-mGluRs) with the agonist (S)-3,5-dihydroxyphenylglycine (DHPG) resulted in a time-dependent increase in DNA binding activity of p50, p65, and c-Rel in area CA1 of the hippocampus. An antagonist of mGluR5, 2-Methyl-6-(phenylethynyl)pyridine, inhibited the DHPG-induced activation of NF-kappaB, whereas an antagonist of mGluR1, (S)-(+)-alpha-amino-4-carboxy-2-methylbenzeneacetic acid, did not. Using a series of inhibitors, we investigated the signaling pathways necessary for DHPG-induced activation of NF-kappaB and found that they included the phosphatidyl inositol 3-kinase, protein kinase C, mitogen-activated protein kinase kinase, and p38-mitogen-activated protein kinase pathways. To determine the functional significance of mGluR-induced regulation of NF-kappaB, we measured long-term depression (LTD) of Schaffer-collateral synapses in the hippocampus of c-Rel knock-out mice. Early phase LTD was normal in c-rel(-/-) mice. However, late-phase LTD (>90 min) was impaired in c-rel(-/-) mice. The observations of this deficit in hippocampal synaptic plasticity prompted us to further investigate long-term memory formation in c-rel(-/-) mice. c-rel(-/-) mice exhibited impaired performance in a long-term passive avoidance task, providing additional evidence for c-Rel in long-term memory formation. These results demonstrate that the NF-kappaB transcription factor family is regulated by GpI-mGluRs in the hippocampus and that the c-Rel transcription factor is necessary for long-term maintenance of LTD and formation of long-term memory.

    Topics: Animals; Animals, Newborn; Avoidance Learning; Behavior, Animal; Blotting, Western; Dose-Response Relationship, Radiation; Electric Stimulation; Enzyme Activation; Enzyme Inhibitors; Enzyme-Linked Immunosorbent Assay; Excitatory Postsynaptic Potentials; Gene Expression; Glycine; Hippocampus; In Vitro Techniques; Long-Term Synaptic Depression; Methoxyhydroxyphenylglycol; Mice; Mice, Inbred C57BL; Mice, Knockout; NF-kappa B; Patch-Clamp Techniques; Phenylacetates; Protein Binding; Protein Subunits; Proto-Oncogene Proteins c-rel; Pyridines; Receptors, Metabotropic Glutamate; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Signal Transduction; Synaptic Transmission; Time Factors

2006
Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2005, Apr-13, Volume: 25, Issue:15

    Striatal medium spiny neurons are an important site of convergence for signaling mediated by the neurotransmitters dopamine and glutamate. We report that in striatal neurons in primary culture, signaling through group I metabotropic glutamate receptors (mGluRs) 1/5 and the D1 class of dopamine receptors (DRs) 1/5 converges to increase phosphorylation of the mitogen-activated protein kinase ERK2 (extracellular signal-regulated kinase 2). Induction of mitogen-activated protein kinase kinase-dependent signaling cascades by either mGluR1/5 or DR1/5 gave rise to increases in phosphorylation of ERK2. Coactivation of mGluR1/5 and DR1/5 with (S)-3,5-dihydroxyphenylglycine and (+)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrochloride enhanced the phosphorylation of ERK2. This interaction between mGluR1/5 and DR1/5 required protein kinase C (PKC), because the PKC inhibitors calphostin C, bisindolylmaleimide I, and Gö6976 blocked DR1/5-enhanced phosphorylation of ERK2. Use of the phosphatase inhibitors calyculin and okadaic acid indicated that inhibition of protein phosphatases 1 and 2A dramatically enhanced ERK2 phosphorylation by mGluR1/5. Coactivation of mGluR1/5 and DR1/5 also enhanced cAMP-response element binding protein (CREB) phosphorylation (compared with each receptor agonist alone) but did not enhance CREB-mediated transcriptional activity. Thus, signal transduction pathways activated by DR1/5 and mGluR5 interact to modify downstream events in striatal neurons while retaining numerous regulatory checkpoints.

    Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Analysis of Variance; Animals; Benzazepines; Benzoates; Blotting, Western; Calcium; Cells, Cultured; Corpus Striatum; Dicarboxylic Acids; Dopamine Agonists; Dopamine Antagonists; Drug Interactions; Embryo, Mammalian; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Female; Fluorescent Antibody Technique; Glycine; Methoxyhydroxyphenylglycol; Mitogen-Activated Protein Kinase 1; Models, Biological; Neurons; Phenylacetates; Phosphorylation; Pregnancy; Protein Kinase C; Rats; Rats, Sprague-Dawley; Receptors, Dopamine D1; Receptors, Metabotropic Glutamate; Transfection

2005
Differential roles of mGluR1 and mGluR5 in brief and prolonged nociceptive processing in central amygdala neurons.
    Journal of neurophysiology, 2004, Volume: 91, Issue:1

    The laterocapsular division of the central nucleus of the amygdala (CeA) is now defined as the "nociceptive amygdala" because of its high content of neurons that respond to painful stimuli. The majority of these neurons become sensitized in a model of arthritis pain. Here we address the role of G protein-coupled group I metabotropic glutamate receptor subtypes mGluR1 and mGluR5 in nociceptive processing under normal conditions and in pain-related sensitization. Extracellular single-unit recordings were made from 65 CeA neurons in anesthetized rats. Each neuron's responses to brief mechanical stimuli, background activity, receptive field size, and threshold were measured before and after induction of the kaolin/carrageenan mono-arthritis in one knee and before and during applications of agonists and antagonists into the CeA by microdialysis. All neurons received excitatory input from the knee(s) and responded most strongly to noxious stimuli. Before arthritis, a group I mGluR1 and mGluR5 agonist (DHPG, n = 10) potentiated the responses to innocuous and noxious stimuli. This effect was mimicked by an mGluR5 agonist (CHPG, n = 15). In the arthritis pain state (>6 h after induction), the facilitatory effects of DHPG (n = 9), but not CHPG (n = 7), increased. An mGluR1 antagonist (CPCCOEt) had no effect before arthritis (n = 12) but inhibited the responses of sensitized neurons in the arthritis pain state (n = 8). An mGluR5 antagonist (MPEP) inhibited brief nociceptive responses under normal conditions (n = 19) and prolonged nociception in arthritis (n = 8). These data suggest a change of mGluR1 function and activation in the amygdala in pain-related sensitization, whereas mGluR5 is involved in brief as well as prolonged nociception.

    Topics: Action Potentials; Amygdala; Animals; Arthritis; Chromones; Dose-Response Relationship, Drug; Glycine; Kaolin; Male; Methoxyhydroxyphenylglycol; Neurons; Phenylacetates; Physical Stimulation; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate

2004
Mechanisms and physiological role of enhancement of mGlu5 receptor function by group II mGlu receptor activation in rat perirhinal cortex.
    The Journal of physiology, 2002, May-01, Volume: 540, Issue:Pt 3

    In this study we have investigated mechanisms underlying enhancement by group II metabotropic glutamate (mGlu) receptors of group I mGlu receptor-induced calcium mobilization. Inhibition of protein kinase A (PKA) caused an enhancement of mGlu5 receptor-mediated calcium mobilization and occluded the enhancement by group II mGlu receptors. A peptide (Ht31) that prevents interaction between A-kinase anchoring protein (AKAP) and PKA also enhanced mGlu5-mediated calcium mobilization. Enhancement of mGlu5 function, by inhibition of PKA or by activation of group II mGlu receptors, was prevented by the protein phosphatase 2B (PP2B) inhibitor cyclosporin A. Furthermore, the enhancement by activation of group II mGlu receptors was prevented by raising intracellular cAMP. These results suggest that the regulation by PKA and PP2B of phosphorylation of a substrate on mGlu5 and/or on group II mGlu receptors is intimately involved in the mechanisms underlying interaction between group II mGlu and mGlu5 receptors. Long-term depression (LTD) in perirhinal cortex requires group I, group II and NMDA receptor activation at resting membrane potentials but does not require group II mGlu receptor activation at depolarized potentials. We previously suggested that interaction between group I and group II mGlu receptors is required for induction of LTD at resting potentials. In support of this, we demonstrate in perirhinal cortex slices that blocking mechanisms underlying mGlu receptor synergy (by raising intracellular cAMP or by inhibition of PP2B) selectively prevented LTD at resting membrane potentials. This study thus provides a potential explanation for the co-requirement in LTD of group I and group II mGlu receptor activation. Similar mechanisms of synergistic interaction may also be important in other physiological processes dependent on mGlu receptors.

    Topics: 8-Bromo Cyclic Adenosine Monophosphate; Animals; Animals, Newborn; Calcium; Cells, Cultured; Entorhinal Cortex; Excitatory Amino Acid Agonists; Glycine; In Vitro Techniques; Kinetics; Male; Methoxyhydroxyphenylglycol; Neuronal Plasticity; Neurons; Parahippocampal Gyrus; Phenylacetates; Rats; Rats, Inbred Strains; Receptor Cross-Talk; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Temporal Lobe

2002
Epileptogenesis up-regulates metabotropic glutamate receptor activation of sodium-calcium exchange current in the amygdala.
    Journal of neurophysiology, 2000, Volume: 83, Issue:4

    Postsynaptic metabotropic glutamate (mGlu) receptor-activated inward current mediated by Na(+)-Ca(2+) exchange was compared in basolateral amygdala (BLA) neurons from brain slices of control (naïve and sham-operated) and amygdala-kindled rats. In control neurons, the mGlu agonist, quisqualate (QUIS; 1-100 microM), evoked an inward current not associated with a significant change in membrane slope conductance, measured from current-voltage relationships between -110 and -60 mV, consistent with activation of the Na(+)-Ca(2+) exchanger. Application of the group I selective mGlu receptor agonist (S)-3,5-dihydroxyphenylglycine [(S)-DHPG; 10-1000 microM] or the endogenous agonist, glutamate (10-1000 microM), elicited the exchange current. QUIS was more potent than either (S)-DHPG or glutamate (apparent EC(50) = 19 microM, 57 microM, and 0.6 mM, respectively) in activating the Na(+)-Ca(2+) exchange current. The selective mGlu5 agonist, (R, S)-2-chloro-5-hydroxyphenylglycine [(R,S)-CHPG; apparent EC(50) = 2. 6 mM] also induced the exchange current. The maximum response to (R, S)-DHPG was about half of that of the other agonists suggesting partial agonist action. Concentration-response relationships of agonist-evoked inward currents were compared in control neurons and in neurons from kindled animals. The maximum value for the concentration-response relationship of the partial agonist (S)-DHPG- (but not the full agonist- [QUIS or (R,S)-CHPG]) induced inward current was shifted upward suggesting enhanced efficacy of this agonist in kindled neurons. Altogether, these data are consistent with a kindling-induced up-regulation of a group I mGlu-, possibly mGlu5-, mediated responses coupled to Na(+)-Ca(2+) exchange in BLA neurons.

    Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amygdala; Animals; Calcium; Dose-Response Relationship, Drug; Epilepsy; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Kindling, Neurologic; Male; Membrane Potentials; Methoxyhydroxyphenylglycol; Phenylacetates; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Seizures; Sodium; Tetrodotoxin; Up-Regulation

2000
Dual modulation of excitatory synaptic transmission by agonists at group I metabotropic glutamate receptors in the rat spinal dorsal horn.
    Brain research, 2000, Dec-29, Volume: 887, Issue:2

    The effects of group I metabotropic glutamate (mGlu) receptors on excitatory transmission in the rat dorsal horn, but mostly substantia gelatinosa, neurons were investigated using conventional intracellular recording in slices. The broad spectrum mGlu receptor agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD), the group I mGlu receptor selective agonist (S)-3, 5-dihydroxyphenylglycine (DHPG), and the selective mGlu subtype 5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), all induce long-lasting depression of A primary afferent fibers-mediated monosynaptic excitatory postsynaptic potential (EPSP), and long-lasting potentiation of polysynaptic EPSP, and EPSP in cells receiving C-afferent fiber input. The DHPG potentiation of polysynaptic EPSP was partially or fully reversed by (S)-4-carboxyphenylglycine (S-4CPG), the mGlu subtype 1 preferring antagonist. 2-Methyl-6-(phenylethynyl)-pyridine, the potent and selective mGlu subtype 5 antagonist, partially reversed the CHPG potentiation of polysynaptic EPSP. The effects of DHPG on monosynaptic and polysynaptic EPSPs were reduced, or abolished, by the N-methyl-D-aspartate (NMDA) receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5). A clear and pronounced facilitation of the expression of DHPG- and CHPG-induced enhancement of polysynaptic EPSP, and EPSP evoked at C-fiber strength, was seen in the absence of gamma-aminobutyric acid subtype A receptor- and glycine-mediated synaptic inhibition. Besides dual modulation of excitatory synaptic transmission, DHPG induces depression of inhibitory postsynaptic potentials evoked by primary afferent stimulation in dorsal horn neurons. In addition, group I mGlu receptor agonists produced a direct persistent excitatory postsynaptic effect consisting of a slow membrane depolarization, an increase in input resistance, and an intense neuronal discharge. Cyclothiazide and (S)-4-CPG, the mGlu receptor subtype 1 preferring antagonists, significantly attenuated the DHPG-induced depolarization. These results demonstrate that the pharmacological activation of group I metabotropic glutamate receptors induces long-term depression (LTD) and long-term potentiation (LTP) of synaptic transmission in the spinal dorsal horn. These types of long-term synaptic plasticity may play a functional role in the generation of post-injury hypersensitivity (LTP) or antinociception (LTD).

    Topics: Animals; Benzoates; Bicuculline; Cycloleucine; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Glycine; In Vitro Techniques; Kinetics; Magnesium; Male; Methoxyhydroxyphenylglycol; Nerve Fibers; Phenylacetates; Posterior Horn Cells; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Spinal Cord; Strychnine; Substantia Gelatinosa; Synaptic Transmission

2000
Biochemical and electrophysiological studies on (S)-(+)-2-(3'-carboxybicyclo(1.1.1)pentyl)-glycine (CBPG), a novel mGlu5 receptor agonist endowed with mGlu1 receptor antagonist activity.
    Neuropharmacology, 1999, Volume: 38, Issue:7

    The pharmacological profile of (S)-(+)-2-(3'-carboxybicyclo[1.1.1]pentyl)-glycine (CBPG) and of other group 1 metabotropic glutamate (mGlu) receptor agents were studied in BHK cells transfected with mGlu receptor subtypes or in native receptors in brain slices by measuring second messenger responses. The mGlu receptor-mediated changes in the electrophysiological properties of CA1 pyramidal cells of the hippocampus were also evaluated. In mGlu5a receptor transfected cells, CBPG behaved as a partial agonist, while in mGlu1alpha receptor transfected cells, it behaved as a glutamate antagonist. No effect was found on cAMP formation in cells transfected with mGlu2 receptors or mGlu4 receptors. In brain slices, CBPG neither affected phospholipase D-coupled glutamate receptors nor did it modify the responses to ionotropic receptor stimulation (at concentrations up to 1 mM). When tested in CA1 pyramidal cells of the hippocampus, CBPG (50-100 microM) caused depolarization, increased cell input resistance, and decreased action potential frequency adaptation and afterhyperpolarization. DHPG (3-100 microM), an agonist of both mGlu1 and mGlu5 receptors, and CHPG (1000 microM), a low affinity mGlu5 agonist, produced qualitatively similar effects. The actions of CBPG or CHPG were not modified by AIDA (300 microM), a selective mGlu1 receptor antagonist. Our results suggest that CBPG could be a useful tool for discriminating between mGlu1 receptor and mGlu5 receptor effects and that mGlu5 receptors are the receptors which are mainly responsible for the direct excitatory effects of mGlu receptor agonists on CA1 pyramidal cells.

    Topics: Animals; Brain; Bridged Bicyclo Compounds; Cell Membrane; Cells, Cultured; Cricetinae; Electrophysiology; Excitatory Amino Acid Antagonists; Glycine; Male; Methoxyhydroxyphenylglycol; Neurons; Phenylacetates; Pyramidal Tracts; Rats; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Second Messenger Systems; Transfection

1999
DHPG-induced LTD in area CA1 of juvenile rat hippocampus; characterisation and sensitivity to novel mGlu receptor antagonists.
    Neuropharmacology, 1999, Volume: 38, Issue:10

    We have used extracellular microelectrode recording to characterise a form of long-term depression (LTD) of synaptic transmission that can be induced by metabotropic glutamate (mGlu) receptor activation in the CA1 region of the young (12-18 day old) rat hippocampus. Activation of group I mGlu receptors by the specific agonist 3,5-dihydroxyphenylglyine (DHPG) induced LTD of field excitatory postsynaptic potentials (fEPSPs). The mGlu5 selective agonist 2-chloro-5-hydroxyphenylglycine was also capable of inducing LTD. In contrast, the group II specific agonist DCG-IV had no effect on synaptic transmission, whilst the group III receptor agonist (S)-2-amino-4-phosphonobutyrate elicited a depression that reversed fully upon agonist washout. DHPG-induced LTD could still be generated after prior saturation of electrically-induced NMDA receptor-dependent LTD. DHPG-induced LTD was reversed by tetanic stimulation comprising 100 shocks delivered at 100 Hz. A novel mGlu receptor antagonist, (RS)-2-amino-2-(3-cis and trans-carboxycyclobutyl-3-(9-thioxanthyl)propionic acid) (LY393053) that potently inhibits mGlu1 and mGlu5 receptors, prevented the induction of DHPG-induced LTD. Like other mGlu receptor antagonists, LY393053 also reversed pre-established DHPG-induced LTD. In contrast, a potent mGlu1 selective antagonist (S)-2-methyl-4-carboxyphenylglycine (LY367385) did not prevent the induction of DHPG-induced LTD. In conclusion, DHPG, probably via activation of mGlu5 receptors, is able to induce a robust form of LTD in the CA1 region of the young rat hippocampus that is mechanistically distinct from NMDA receptor-dependent homosynaptic LTD.

    Topics: Animals; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glycine; Hippocampus; In Vitro Techniques; Methoxyhydroxyphenylglycol; Neuronal Plasticity; Phenylacetates; Propionates; Rats; Rats, Wistar; Receptors, Metabotropic Glutamate; Structure-Activity Relationship

1999
Induction of LTD by activation of group I mGluR in the dentate gyrus in vitro.
    Neuropharmacology, 1999, Volume: 38, Issue:10

    The ability of activation of group I metabotropic glutamate receptors (mGluR) to induce long-term depression (LTD) was investigated in the medial perforant path of the dentate gyrus in vitro. Application of the group I agonists (RS)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), and also the partial agonist (S)-(+)-2-(3'-Carboxybicyclo[1.1.1]pentyl)-glycine (UPF 596), induced LTD of the field EPSP. The induction of LTD is likely to be mediated via mGluR5 since CHPG and UPF 596 are selective agonists/partial agonists at that receptor. Further evidence for the involvement of group I mGluR in LTD induction was the finding, that the DHPG and low frequency stimulation induced LTD were inhibited by the group I mGluR antagonist [CRS]-1-aminoindan-1,5-dicarboxylic acid (AIDA). Investigation of the intracellular mechanisms underlying the induction of the group I mGluR-mediated LTD showed an inhibition of the LTD by the protein kinase C (PKC) inhibitor bisindolylmaleimide I and the protein tyrosine kinase inhibitor lavendustin A, but not the PKA inhibitor H89. These studies demonstrate that DHPG-induced LTD can be induced by the activation of mGluR5 followed by intracellular stimulation of PKC and tyrosine kinase.

    Topics: Animals; Cyclic AMP-Dependent Protein Kinases; Dentate Gyrus; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; In Vitro Techniques; Indans; Indoles; Isoquinolines; Maleimides; Methoxyhydroxyphenylglycol; Neuronal Plasticity; Phenols; Phenylacetates; Protein Kinase C; Protein-Tyrosine Kinases; Rats; Receptors, Metabotropic Glutamate; Sulfonamides

1999