2-chloro-5-hydroxyphenylglycine has been researched along with 2-(2-3-dicarboxycyclopropyl)glycine* in 3 studies
3 other study(ies) available for 2-chloro-5-hydroxyphenylglycine and 2-(2-3-dicarboxycyclopropyl)glycine
Article | Year |
---|---|
Distinct modes of modulation of GABAergic transmission by Group I metabotropic glutamate receptors in rat entorhinal cortex.
Activation of metabotropic glutamate receptors (mGluRs) modulates synaptic transmission, whereas the roles of mGluRs in GABAergic transmission in the entorhinal cortex (EC) are elusive. Here, we examined the effects of mGluRs on GABAergic transmission onto the principal neurons in the superficial layers of the EC. Bath application of DHPG, a selective Group I mGluR agonist, increased the frequency and amplitude of spontaneous IPSCs (sIPSCs) whereas application of DCG-IV, an agonist for Group II mGluRs or L-AP4, an agonist for Group III mGluRs failed to change significantly sIPSC frequency and amplitude. Bath application of DHPG failed to change significantly the frequency and amplitude of miniature IPSCs (mIPSCs) recorded in the presence of tetradotoxin but significantly reduced the amplitude of IPSCs evoked by extracellular field stimulation or in synaptically connected interneuron-pyramidal neuron pairs in layer III of the EC. DHPG increased the frequency but reduced the amplitude of APs recorded from entorhinal interneurons. Bath application of DHPG generated membrane depolarization and increased the input resistance of GABAergic interneurons. DHPG-mediated depolarization of GABAergic interneurons was mediated by inhibition of background K(+) channels which are insensitive to extracellular Cs(+), TEA, 4-AP, and Ba(2+). DHPG-induced facilitation of sIPSCs was mediated by mGluR(5) and required the function of Galphaq but was independent of phospholipase C activity. Elevation of synaptic glutamate concentration by bath application of glutamate transporter inhibitors significantly increased sIPSC frequency and amplitude demonstrating a physiological role of mGluRs in GABAergic transmission. Our results provide a cellular and molecular mechanism to explain the physiological and pathological roles of mGluRs in the EC. Topics: Analysis of Variance; Animals; Animals, Newborn; Anticonvulsants; Benzoates; Cardiotonic Agents; Cyclopropanes; Entorhinal Cortex; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Agents; gamma-Aminobutyric Acid; Glycine; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Methoxyhydroxyphenylglycol; Neural Inhibition; Neurons; Patch-Clamp Techniques; Phenylacetates; Potassium Channel Blockers; Pyrimidines; Rats; Receptors, Metabotropic Glutamate; Signal Transduction; Synaptic Transmission; Tetraethylammonium | 2010 |
Metabotropic glutamate receptor 5 mediates the potentiation of N-methyl-D-aspartate responses in medium spiny striatal neurons.
Medium spiny neurons were recorded from striatal slices obtained from mice lacking the group I metabotropic glutamate receptor (mGluR) subtype 1 or subtype 5. In wild-type animals, N-methyl-D-aspartate (NMDA)-induced membrane depolarization/inward currents were potentiated in the presence of both the group I mGluR agonist 3,5-dihydroxyphenylglycine (3,5-DHPG) and the mGluR5 selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG). Likewise, in mGluR1 knockout mice, both 3,5-DHPG and CHPG were able to potentiate NMDA responses. Conversely, in neurons recorded from mGluR5-deficient mice, the enhancement of NMDA responses by both 3,5-DHPG and CHPG was absent. Pharmacological analysis performed from rat slices confirmed the data obtained with mice. In the presence of the competitive mGluR1 antagonist LY367385, the NMDA responses were potentiated in the presence of CHPG, whereas the CHPG-induced enhancement was not observed in slices treated with the non-competitive mGluR5 antagonist 2-methyl-6-(phenylethynyl)-pyridine. As in wild-type mice, in neither of the mGluR1- and mGluR5-deficient mice did (2S,1'R,2'R,3'R)-2-(2,3-dicarboxylcyclopropyl)-glycine (1 microM), nor L-serine-O-phosphate (30 microM) (agonists for group II and III mGluRs, respectively) affect the NMDA-evoked responses. In striatal medium spiny neurons, NMDA responses are potentiated by endogenous acetylcholine via M1-like muscarinic receptors. Since the enhancement of NMDA responses by 3,5-DHPG and by M1-like muscarinic agonists was shown to share common post-receptor mechanisms, we verified whether the muscarinic potentiation of NMDA responses was affected in these group I mGluR-deficient mice. Both in mGluR1 and mGluR5 knockout animals, in the presence of either muscarine or the M1-like muscarinic receptor agonist McN-A-343, the positive modulation of the NMDA-induced membrane depolarization persisted.These results confirm the permissive role of group I mGluRs on NMDA responses in striatal neurons and reveal that this functional interplay occurs exclusively through the mGluR5 subtype. The NMDA-mGluR5 interaction might play an important modulatory role in the final excitatory drive from corticostriatal afferents and suggests that drugs acting at mGluR5 might prove useful for the treatment of movement disorders involving the striatum. Topics: (4-(m-Chlorophenylcarbamoyloxy)-2-butynyl)trimethylammonium Chloride; Action Potentials; Animals; Anticonvulsants; Benzoates; Cyclopropanes; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; Mice; Mice, Knockout; Muscarine; Muscarinic Agonists; N-Methylaspartate; Neostriatum; Neurons; Phenylacetates; Pyridines; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Resorcinols; Synaptic Transmission | 2001 |
Mobilisation of intracellular Ca2+ by mGluR5 metabotropic glutamate receptor activation in neonatal rat cultured dorsal root ganglia neurones.
The ability of metabotropic glutamate receptor activation to mobilise intracellular calcium was investigated in cultured dorsal root ganglion (DRG) neurones from neonatal rats using the calcium sensitive fluorescent dye Fura-2. L-glutamate (10 microM) caused sustained and oscillatory increases in intracellular calcium concentration ([Ca2+]i) in a subpopulation of cultured DRG neurones. The oscillatory responses were not blocked by combined application of the ionotropic glutamate receptor antagonists MK 801 (2 microM) and CNQX (20 microM). Oscillations in [Ca2+]i were also observed following application of the nonselective metabotropic glutamate receptor (mGluR) agonist, trans-(1S,3R)-1-aminocyclopentane-1S, 3R-dicarboxylic acid (1S,3R)-ACPD, 20 microM) and the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 500 microM). These responses were blocked by the selective Group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) (100 microM) and Ca2+ release channel inhibitors ryanodine (100 microM) and dantrolene (10 microM). The predominantly Group II agonist (2S,2'R,3'R)-2-(2'3'-dicarboxy-cyclopropyl)glycine (DCG-IV, 100 microM) failed to produce Ca2+ transients alone but suppressed responses to CHPG. Reverse transcriptase PCR techniques, using primers specific to Group I mGluRs, revealed the presence of mGluR5 but not mGluR1 mRNA in these cells. Therefore, glutamate can cause a slowly activating and reversible mobilisation of [Ca2+]i in sensory neurones by activation of ionotropic receptors, and can induce oscillatory calcium transients by selectively activating metabotropic glutamate receptors that are likely to be of the mGluR5 subtype. Topics: Animals; Animals, Newborn; Calcium; Calcium Channel Blockers; Cells, Cultured; Cycloleucine; Cyclopropanes; Dantrolene; Fluorescence; Ganglia, Spinal; Glutamic Acid; Glycine; Indans; Phenylacetates; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ryanodine; Ryanodine Receptor Calcium Release Channel; Stereoisomerism | 2000 |