2-chloro-5-hydroxyphenylglycine has been researched along with 1-aminoindan-1-5-dicarboxylic-acid* in 4 studies
4 other study(ies) available for 2-chloro-5-hydroxyphenylglycine and 1-aminoindan-1-5-dicarboxylic-acid
Article | Year |
---|---|
Characterization of [(3)H]Quisqualate binding to recombinant rat metabotropic glutamate 1a and 5a receptors and to rat and human brain sections.
We have investigated the binding properties of [(3)H]quisqualate to rat metabotropic glutamate (mGlu) 1a and 5a receptors and to rat and human brain sections. Saturation isotherms gave K:(D) values of 27 +/- 4 and 81 +/- 22 nM: for mGlu1a and mGlu5a receptors, respectively. Several compounds inhibited the binding to mGlu1a and mGlu5a receptors concentration-dependently. (S:)-4-Carboxyphenylglycine, (S:)-4-carboxy-3-hydroxyphenylglycine, and (R,S)-1-aminoindan-1,5-dicarboxylic acid, which completely inhibited [(3)H]quisqualate binding to the mGlu5a receptor, were inactive in a functional assay using this receptor. The distribution and abundance of binding sites in rat and human brain sections were studied by quantitative receptor radioautography and image analysis. Using 10 nM: [(3)H]quisqualate, a high density of binding was detected in various brain regions with the following rank order of increasing levels: medulla, thalamus, olfactory bulb, cerebral cortex, spinal cord dorsal horn, olfactory tubercle, dentate gyrus molecular layer, CA1-3 oriens layer of hippocampus, striatum, and cerebellar molecular layer. The ionotropic component of this binding could be inhibited by 30 microM: kainate, revealing the distribution of mGlu1+5 receptors. The latter were almost completely inhibited by the group I agonist (S:)-3,5-dihydroxyphenylglycine. The binding profile correlated well with the cellular sites of synthesis and regional expression of the respective group I receptor proteins revealed by in situ hybridization histochemistry and immunohistochemistry, respectively. Topics: Animals; Binding, Competitive; Brain; Calcium; Cells, Cultured; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; Humans; Imidazoles; Indans; Intracellular Fluid; Kainic Acid; Male; Organ Specificity; Quinazolines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Recombinant Proteins; Spinal Cord; Transfection | 2000 |
Mobilisation of intracellular Ca2+ by mGluR5 metabotropic glutamate receptor activation in neonatal rat cultured dorsal root ganglia neurones.
The ability of metabotropic glutamate receptor activation to mobilise intracellular calcium was investigated in cultured dorsal root ganglion (DRG) neurones from neonatal rats using the calcium sensitive fluorescent dye Fura-2. L-glutamate (10 microM) caused sustained and oscillatory increases in intracellular calcium concentration ([Ca2+]i) in a subpopulation of cultured DRG neurones. The oscillatory responses were not blocked by combined application of the ionotropic glutamate receptor antagonists MK 801 (2 microM) and CNQX (20 microM). Oscillations in [Ca2+]i were also observed following application of the nonselective metabotropic glutamate receptor (mGluR) agonist, trans-(1S,3R)-1-aminocyclopentane-1S, 3R-dicarboxylic acid (1S,3R)-ACPD, 20 microM) and the mGluR5 agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, 500 microM). These responses were blocked by the selective Group I mGluR antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) (100 microM) and Ca2+ release channel inhibitors ryanodine (100 microM) and dantrolene (10 microM). The predominantly Group II agonist (2S,2'R,3'R)-2-(2'3'-dicarboxy-cyclopropyl)glycine (DCG-IV, 100 microM) failed to produce Ca2+ transients alone but suppressed responses to CHPG. Reverse transcriptase PCR techniques, using primers specific to Group I mGluRs, revealed the presence of mGluR5 but not mGluR1 mRNA in these cells. Therefore, glutamate can cause a slowly activating and reversible mobilisation of [Ca2+]i in sensory neurones by activation of ionotropic receptors, and can induce oscillatory calcium transients by selectively activating metabotropic glutamate receptors that are likely to be of the mGluR5 subtype. Topics: Animals; Animals, Newborn; Calcium; Calcium Channel Blockers; Cells, Cultured; Cycloleucine; Cyclopropanes; Dantrolene; Fluorescence; Ganglia, Spinal; Glutamic Acid; Glycine; Indans; Phenylacetates; Rats; Rats, Sprague-Dawley; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Reverse Transcriptase Polymerase Chain Reaction; RNA, Messenger; Ryanodine; Ryanodine Receptor Calcium Release Channel; Stereoisomerism | 2000 |
Metabotropic glutamate autoreceptors of the mGlu(5) subtype positively modulate neuronal glutamate release in the rat forebrain in vitro.
In the present study we have examined the role of presynaptic group I metabotropic glutamate (mGlu) receptors in the control of neuronal glutamate release using rat forebrain slices pre-loaded with [(3)H]D-aspartate. We have also addressed the question of which group I mGlu receptor subtype, mGlu(1) or mGlu(5), mediates the facilitatory response observed by the use of a range of established and some more novel agonists and antagonists showing selectivity for these receptors. The electrically-stimulated release of pre-loaded [(3)H]D-aspartate from rat forebrain slices was markedly potentiated by the potent group I mGlu receptor agonist, L-quisqualic acid (L-QUIS), in a concentration-dependent manner (EC(50) 17.31 microM). This response was inhibited by the mGlu receptor antagonists (S)-MCPG (100 microM) and (RS)-MTPG (100 microM) but not by the AMPA-type ionotropic glutamate receptor antagonist, NBQX (100 microM). The selective group I mGlu receptor agonist (S)-3, 5-dihydroxyphenylglycine ((S)-DHPG) also enhanced electrically-stimulated efflux of label, although responses diminished with high (10-100 microM) concentrations of the agonist. Maximum responses were fully restored when (S)-DHPG (10 microM) was applied in the presence of the proposed mGlu(5) receptor desensitization inhibitor, cyclothiazide (10 microM). The positive modulatory response to (S)-DHPG (1 microM) was powerfully inhibited by (S)-MCPG (IC(50) 0.08 microM) but was resistant to the mGlu(1) receptor antagonists, (RS)-AIDA (1-500 microM), CPCCOEt (0.1-100 microM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385) (0.1-10 microM). The recently developed, selective mGlu(5) receptor agonist (RS)-2-chloro-5-hydroxyphenylglycine ((RS)-CHPG) enhanced electrically-stimulated [(3)H]D-aspartate efflux from rat forebrain slices with a similar concentration-response profile to that of (S)-DHPG. Responses to this receptor subtype-selective agonist were also blocked by (S)-MCPG (IC(50) 1.13 microM) but were unaffected by (RS)-AIDA (500 microM), CPCCOEt (100 microM) or LY367385 (10 microM). These results indicate that the positive modulation of neuronal glutamate release seen in the rat forebrain in the presence of group I mGlu receptor agonists is mediated by presynaptically located mGlu(5) glutamate autoreceptors. The pharmacological profile of these receptors appears to be distinct from that of postsynaptic mGlu receptors. Novel antagonists acting at these presynaptic receptors may provide new drugs Topics: Animals; Aspartic Acid; Autoreceptors; Benzoates; Calcium; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamic Acid; Glycine; In Vitro Techniques; Indans; Male; Neurons; Phenylacetates; Prosencephalon; Quisqualic Acid; Rats; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Resorcinols; Tetrodotoxin; Tritium | 2000 |
Induction of LTD by activation of group I mGluR in the dentate gyrus in vitro.
The ability of activation of group I metabotropic glutamate receptors (mGluR) to induce long-term depression (LTD) was investigated in the medial perforant path of the dentate gyrus in vitro. Application of the group I agonists (RS)-3,5-dihydroxyphenylglycine (DHPG) and (RS)-2-chloro-5-hydroxyphenylglycine (CHPG), and also the partial agonist (S)-(+)-2-(3'-Carboxybicyclo[1.1.1]pentyl)-glycine (UPF 596), induced LTD of the field EPSP. The induction of LTD is likely to be mediated via mGluR5 since CHPG and UPF 596 are selective agonists/partial agonists at that receptor. Further evidence for the involvement of group I mGluR in LTD induction was the finding, that the DHPG and low frequency stimulation induced LTD were inhibited by the group I mGluR antagonist [CRS]-1-aminoindan-1,5-dicarboxylic acid (AIDA). Investigation of the intracellular mechanisms underlying the induction of the group I mGluR-mediated LTD showed an inhibition of the LTD by the protein kinase C (PKC) inhibitor bisindolylmaleimide I and the protein tyrosine kinase inhibitor lavendustin A, but not the PKA inhibitor H89. These studies demonstrate that DHPG-induced LTD can be induced by the activation of mGluR5 followed by intracellular stimulation of PKC and tyrosine kinase. Topics: Animals; Cyclic AMP-Dependent Protein Kinases; Dentate Gyrus; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glycine; In Vitro Techniques; Indans; Indoles; Isoquinolines; Maleimides; Methoxyhydroxyphenylglycol; Neuronal Plasticity; Phenols; Phenylacetates; Protein Kinase C; Protein-Tyrosine Kinases; Rats; Receptors, Metabotropic Glutamate; Sulfonamides | 1999 |