2-c-methylerythritol-4-phosphate and beta-phellandrene

2-c-methylerythritol-4-phosphate has been researched along with beta-phellandrene* in 1 studies

Other Studies

1 other study(ies) available for 2-c-methylerythritol-4-phosphate and beta-phellandrene

ArticleYear
Carbon partitioning to the terpenoid biosynthetic pathway enables heterologous β-phellandrene production in Escherichia coli cultures.
    Archives of microbiology, 2014, Volume: 196, Issue:12

    Escherichia coli was used as a microbial system for the heterologous synthesis of β-phellandrene, a monoterpene of plant origin with several potential commercial applications. Expression of Lavandula angustifolia β-phellandrene synthase (PHLS), alone or in combination with Picea abies geranyl-diphosphate synthase in E. coli, resulted in no β-phellandrene accumulation, in sharp contrast to observations with PHLS-transformed cyanobacteria. Lack of β-phellandrene biosynthesis in E. coli was attributed to the limited endogenous carbon partitioning through the native 2-C-methylerythritol-4-phosphate (MEP) pathway. Heterologous co-expression of the mevalonic acid pathway, enhancing cellular carbon partitioning and flux toward the universal isoprenoid precursors, isopentenyl-diphosphate and dimethylallyl-diphosphate, was required to confer β-phellandrene production. Differences in endogenous carbon flux toward the synthesis of isoprenoids between photosynthetic (Synechocystis) and non-photosynthetic bacteria (E. coli) are discussed in terms of differences in the regulation of carbon partitioning through the MEP biosynthetic pathway in the two systems.

    Topics: Biosynthetic Pathways; Carbon; Cyclohexane Monoterpenes; Cyclohexenes; Erythritol; Escherichia coli; Escherichia coli Proteins; Hemiterpenes; Lavandula; Mevalonic Acid; Monoterpenes; Organophosphorus Compounds; Picea; Recombinant Proteins; Sugar Phosphates; Synechocystis; Terpenes; Transformation, Bacterial

2014