2-aminoethoxydiphenyl borate has been researched along with anandamide in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Nilius, B; Owsianik, G; Talavera, K; Voets, T | 1 |
Amodeo, P; Canela-Garayoa, R; De Petrocellis, L; Di Marzo, V; Eras, J; López Chinarro, S; Novo Fernández, O; Schiano Moriello, A; Vitale, RM | 1 |
Schilling, WP; Sinkins, WG; Wisnoskey, BJ | 1 |
Cabrera, JA; Hong, F; Hong, Z; Nelson, DP; Olschewski, A; Varghese, A; Weir, EK | 1 |
Avelino, A; Cruz, F; Cunha, RA; Ferreira, SG; Köfalvi, A; Lomaglio, T; Oliveira, CR | 1 |
1 review(s) available for 2-aminoethoxydiphenyl borate and anandamide
Article | Year |
---|---|
Sensing with TRP channels.
Topics: Animals; Humans; Ligands; Models, Biological; Phylogeny; Temperature; Transient Receptor Potential Channels | 2005 |
4 other study(ies) available for 2-aminoethoxydiphenyl borate and anandamide
Article | Year |
---|---|
Elongation of the Hydrophobic Chain as a Molecular Switch: Discovery of Capsaicin Derivatives and Endogenous Lipids as Potent Transient Receptor Potential Vanilloid Channel 2 Antagonists.
Topics: Animals; Capsaicin; Drug Discovery; HEK293 Cells; Humans; Hydrophobic and Hydrophilic Interactions; Ligands; Lipids; Models, Molecular; Molecular Structure; Protein Conformation; Rats; Structure-Activity Relationship; TRPV Cation Channels | 2018 |
Activation of vanilloid receptor type I in the endoplasmic reticulum fails to activate store-operated Ca2+ entry.
Topics: Animals; Arachidonic Acids; Baculoviridae; Barium; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels; Calcium Signaling; Cannabinoids; Capsaicin; Cells, Cultured; Diterpenes; Endocannabinoids; Endoplasmic Reticulum; Enzyme Inhibitors; Humans; Immunoblotting; Ion Transport; Microscopy, Confocal; Neurotoxins; Polyunsaturated Alkamides; Rats; Receptors, Drug; Recombinant Proteins; Thapsigargin; Transfection; TRPV Cation Channels; Type C Phospholipases | 2003 |
Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus.
Topics: Animals; Arachidonic Acids; Boron Compounds; Calcium; Calcium Channel Blockers; Calcium Channels, L-Type; Calcium Signaling; Cytosol; Ductus Arteriosus; Endocannabinoids; Imidazoles; In Vitro Techniques; Indoles; Intracellular Signaling Peptides and Proteins; Isoquinolines; Maleimides; Menthol; Mibefradil; Muscle Contraction; Nifedipine; Niflumic Acid; Oxidation-Reduction; Oxygen; Patch-Clamp Techniques; Polyunsaturated Alkamides; Potassium Channels; Protein Serine-Threonine Kinases; Rabbits; rho-Associated Kinases; Ruthenium Red; Sulfonamides; Tetraethylammonium; Thapsigargin; Thiourea | 2006 |
N-acyldopamines control striatal input terminals via novel ligand-gated cation channels.
Topics: Animals; Arachidonic Acids; Boron Compounds; Capsaicin; Cations; Corpus Striatum; Dopamine; Endocannabinoids; Glutamic Acid; Ion Channels; Ligands; Male; Mice; Mice, Mutant Strains; Polyunsaturated Alkamides; Presynaptic Terminals; Rats; Rats, Wistar; Synaptosomes; TRPV Cation Channels | 2009 |