2-amino-7-phosphonoheptanoic acid has been researched along with quisqualic acid in 17 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 6 (35.29) | 18.7374 |
1990's | 10 (58.82) | 18.2507 |
2000's | 1 (5.88) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bramlett, D; Garrison, DT; Kinney, WA; Kowal, DM; Lee, NE; Notvest, RR; Podlesny, EJ; Simmonds, JT; Tasse, RP | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Pai, KS; Ravindranath, V | 1 |
Gale, K; Miller, LP; Murray, TF; Zhong, P | 1 |
Denavit-Saubie, M; Foutz, AS; Pierrefiche, O; Schmid, K | 1 |
Dougherty, PM; Willis, WD | 1 |
Sapru, H; Sundaram, K | 1 |
Daw, N; Fox, K; Sato, H | 1 |
Clow, DW; Jhamandas, K | 1 |
Ogita, K; Yoneda, Y | 1 |
Jacquet, YF; Squires, RF | 1 |
Jacquet, YF | 1 |
Cowburn, RF; Hardy, JA; Roberts, PJ | 1 |
Do, KQ; Herrling, PL; Turski, WA | 1 |
Kinney, GG; Kocsis, B; Vertes, RP | 1 |
Ebner, TJ; Elias, SA; Yae, H | 1 |
Kato, N | 1 |
17 other study(ies) available for 2-amino-7-phosphonoheptanoic acid and quisqualic acid
Article | Year |
---|---|
Bioisosteric replacement of the alpha-amino carboxylic acid functionality in 2-amino-5-phosphonopentanoic acid yields unique 3,4-diamino-3-cyclobutene-1,2-dione containing NMDA antagonists.
Topics: 2-Amino-5-phosphonovalerate; Animals; Binding Sites; Carboxylic Acids; Male; Mice; N-Methylaspartate; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Stereoisomerism; Structure-Activity Relationship | 1992 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Quisqualic acid-induced neurotoxicity is protected by NMDA and non-NMDA receptor antagonists.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Brain; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ion Channel Gating; L-Lactate Dehydrogenase; Mice; Potassium; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate | 1992 |
Amino acid neurotransmitter interactions in 'area tempestas': an epileptogenic trigger zone in the deep prepiriform cortex.
Topics: 2-Amino-5-phosphonovalerate; Adenosine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Amygdala; Animals; Bicuculline; Brain Mapping; Carbachol; Dominance, Cerebral; Dose-Response Relationship, Drug; Electroencephalography; Epilepsy; Ibotenic Acid; Kainic Acid; Limbic System; Muscimol; Quisqualic Acid; Rats; Receptors, GABA-A; Receptors, N-Methyl-D-Aspartate | 1992 |
Endogenous activation of NMDA and non-NMDA glutamate receptors on respiratory neurones in cat medulla.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Cats; Decerebrate State; Iontophoresis; Medulla Oblongata; Membrane Potentials; N-Methylaspartate; Neurons; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Respiratory Center | 1991 |
Modification of the responses of primate spinothalamic neurons to mechanical stimulation by excitatory amino acids and an N-methyl-D-aspartate antagonist.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Glutamates; Glutamic Acid; Macaca fascicularis; N-Methylaspartate; Neurons; Quisqualic Acid; Spinothalamic Tracts | 1991 |
NMDA receptors in the intermediolateral column of the spinal cord mediate sympathoexcitatory cardiac responses elicited from the ventrolateral medullary pressor area.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Animals; Convulsants; Glutamates; Glutamic Acid; Heart Rate; Ibotenic Acid; Kainic Acid; Male; Medulla Oblongata; Microinjections; Myocardial Contraction; N-Methylaspartate; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Spinal Cord | 1991 |
The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Cats; Electric Stimulation; Electrodes; Hippocampus; Iontophoresis; Neurons; Photic Stimulation; Quinoxalines; Quisqualic Acid; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Visual Cortex | 1990 |
Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Caudate Nucleus; Dopamine; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; In Vitro Techniques; Magnesium; Male; N-Methylaspartate; Oxadiazoles; Phenazocine; Potassium; Putamen; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1989 |
Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cell Membrane; Glutamates; Glutamic Acid; Kinetics; Male; N-Methylaspartate; Octoxynol; Oxadiazoles; Polyethylene Glycols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Solubility | 1989 |
Excitatory amino acids: role in morphine excitation in rat periaqueductal gray.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; Motor Activity; N-Methylaspartate; Oxadiazoles; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A | 1988 |
The NMDA receptor: central role in pain inhibition in rat periaqueductal gray.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesia; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; N-Methylaspartate; Oxadiazoles; Pain; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter | 1988 |
Characterisation of Na+-independent L-[3H]glutamate binding sites in human temporal cortex.
Topics: 2-Amino-5-phosphonovalerate; Aged; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Cell Membrane; Chlorides; Glutamates; Glutamic Acid; Humans; Ibotenic Acid; Kainic Acid; Male; Middle Aged; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium; Temporal Lobe | 1988 |
Effects of L-cysteine-sulphinate and L-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cats; Caudate Nucleus; Cysteine; Female; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid | 1987 |
Injections of excitatory amino acid antagonists into the median raphe nucleus produce hippocampal theta rhythm in the urethane-anesthetized rat.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Anesthesia; Animals; Anticonvulsants; Binding, Competitive; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Hippocampus; Injections; Kainic Acid; Male; Quisqualic Acid; Raphe Nuclei; Rats; Rats, Sprague-Dawley; Theta Rhythm; Urethane | 1994 |
Optical imaging of parallel fiber activation in the rat cerebellar cortex: spatial effects of excitatory amino acids.
Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Anticonvulsants; Cerebellar Cortex; Electric Stimulation; Evoked Potentials; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Kainic Acid; Kynurenic Acid; Membrane Potentials; N-Methylaspartate; Nerve Fibers; Quisqualic Acid; Rats; Rats, Sprague-Dawley | 1993 |
Dependence of long-term depression on postsynaptic metabotropic glutamate receptors in visual cortex.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Bicuculline; Cyclopentanes; Evoked Potentials; gamma-Aminobutyric Acid; Guanosine Diphosphate; Heparin; In Vitro Techniques; Kinetics; Neuronal Plasticity; Neurons; Quinoxalines; Quisqualic Acid; Rats; Receptors, Glutamate; Synapses; Thionucleotides; Visual Cortex | 1993 |