2-amino-7-phosphonoheptanoic acid and oxadiazoles

2-amino-7-phosphonoheptanoic acid has been researched along with oxadiazoles in 8 studies

Research

Studies (8)

TimeframeStudies, this research(%)All Research%
pre-19906 (75.00)18.7374
1990's0 (0.00)18.2507
2000's1 (12.50)29.6817
2010's1 (12.50)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Clow, DW; Jhamandas, K1
Ogita, K; Yoneda, Y1
Jacquet, YF; Squires, RF1
Jacquet, YF1
Cowburn, RF; Hardy, JA; Roberts, PJ1
Do, KQ; Herrling, PL; Turski, WA1
Aguiar, DC; Beijamini, V; de Lucca, AC; GuimarĂ£es, FS; Moreira, FA1
Casarotto, PC; Diniz, CR; Joca, SR1

Reviews

1 review(s) available for 2-amino-7-phosphonoheptanoic acid and oxadiazoles

ArticleYear
Role of nitric oxide in brain regions related to defensive reactions.
    Neuroscience and biobehavioral reviews, 2005, Volume: 29, Issue:8

    Topics: 2-Amino-5-phosphonovalerate; Animals; Anxiety; Behavior, Animal; Brain; Cats; Cyclic N-Oxides; Dose-Response Relationship, Drug; Enzyme Inhibitors; Escape Reaction; Excitatory Amino Acid Antagonists; Free Radical Scavengers; GABA Modulators; Imidazoles; Immunohistochemistry; Maze Learning; Midazolam; Models, Biological; NADPH Dehydrogenase; Nitric Oxide; Oxadiazoles; Quinoxalines; Rats

2005

Other Studies

7 other study(ies) available for 2-amino-7-phosphonoheptanoic acid and oxadiazoles

ArticleYear
Characterization of L-glutamate action on the release of endogenous dopamine from the rat caudate-putamen.
    The Journal of pharmacology and experimental therapeutics, 1989, Volume: 248, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Caudate Nucleus; Dopamine; Dose-Response Relationship, Drug; Glutamates; Glutamic Acid; In Vitro Techniques; Magnesium; Male; N-Methylaspartate; Oxadiazoles; Phenazocine; Potassium; Putamen; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1989
Solubilization of quisqualate-sensitive [3H]glutamate binding activity from rat retina.
    Journal of neurochemistry, 1989, Volume: 52, Issue:5

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Cell Membrane; Glutamates; Glutamic Acid; Kinetics; Male; N-Methylaspartate; Octoxynol; Oxadiazoles; Polyethylene Glycols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Solubility

1989
Excitatory amino acids: role in morphine excitation in rat periaqueductal gray.
    Behavioural brain research, 1988, Nov-01, Volume: 31, Issue:1

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; Motor Activity; N-Methylaspartate; Oxadiazoles; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, GABA-A

1988
The NMDA receptor: central role in pain inhibition in rat periaqueductal gray.
    European journal of pharmacology, 1988, Sep-23, Volume: 154, Issue:3

    Topics: 2-Amino-5-phosphonovalerate; Amino Acids; Analgesia; Animals; Aspartic Acid; Kainic Acid; Male; Morphine; N-Methylaspartate; Oxadiazoles; Pain; Periaqueductal Gray; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter

1988
Characterisation of Na+-independent L-[3H]glutamate binding sites in human temporal cortex.
    Journal of neurochemistry, 1988, Volume: 50, Issue:6

    Topics: 2-Amino-5-phosphonovalerate; Aged; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Cell Membrane; Chlorides; Glutamates; Glutamic Acid; Humans; Ibotenic Acid; Kainic Acid; Male; Middle Aged; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium; Temporal Lobe

1988
Effects of L-cysteine-sulphinate and L-aspartate, mixed excitatory amino acid agonists, on the membrane potential of cat caudate neurons.
    Brain research, 1987, Jun-30, Volume: 414, Issue:2

    Topics: 2-Amino-5-phosphonovalerate; Action Potentials; Amino Acids; Animals; Aspartic Acid; Cats; Caudate Nucleus; Cysteine; Female; Kainic Acid; Male; Membrane Potentials; N-Methylaspartate; Neurotransmitter Agents; Oxadiazoles; Quisqualic Acid

1987
NMDA-NO signaling in the dorsal and ventral hippocampus time-dependently modulates the behavioral responses to forced swimming stress.
    Behavioural brain research, 2016, 07-01, Volume: 307

    Topics: 2-Amino-5-phosphonovalerate; Animals; Arginine; Cobalt; Dose-Response Relationship, Drug; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Exploratory Behavior; Hippocampus; Male; Nitric Oxide; Oxadiazoles; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Signal Transduction; Swimming

2016