2-amino-5-phosphonovalerate has been researched along with staurosporine in 7 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 4 (57.14) | 18.2507 |
2000's | 3 (42.86) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bittar, P; Boddeke, H; Muller, D | 1 |
Onozuka, M; Watanabe, K | 1 |
Burke, JP; Hablitz, JJ | 1 |
Bonci, A; Williams, JT | 1 |
Lerma, J; López-García, JC; Rodríguez-Moreno, A | 1 |
Jiang, L; Kang, J; Nedergaard, M; Xu, J | 1 |
Cho, K; Jung, SJ; Kim, J; Kim, SJ; Oh, SB; Park, YK | 1 |
7 other study(ies) available for 2-amino-5-phosphonovalerate and staurosporine
Article | Year |
---|---|
Induction of stable long-term potentiation in the presence of the protein kinase C antagonist staurosporine.
Topics: 2-Amino-5-phosphonovalerate; Alkaloids; Animals; Electric Stimulation; Evoked Potentials; Hippocampus; In Vitro Techniques; Kinetics; Neurons; Protein Kinase C; Pyramidal Tracts; Rats; Receptors, N-Methyl-D-Aspartate; Staurosporine | 1992 |
Glutamate elicits an outward K+ current which is normally suppressed by a Ca2+/calmodulin-dependent protein kinase II.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Alkaloids; Animals; Calcium-Calmodulin-Dependent Protein Kinases; Cell Membrane; Cholera Toxin; Dose-Response Relationship, Drug; Ganglia, Invertebrate; Glutamic Acid; In Vitro Techniques; Isoquinolines; Kynurenic Acid; Membrane Potentials; Neurons; Pertussis Toxin; Piperazines; Potassium Channels; Protein Kinase Inhibitors; Snails; Staurosporine; Sulfonamides; Time Factors; Virulence Factors, Bordetella | 1994 |
G-protein activation by metabotropic glutamate receptors reduces spike frequency adaptation in neocortical neurons.
Topics: 1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine; 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Adult; Alanine; Amino Acids, Dicarboxylic; Animals; Benzoates; Cycloleucine; Enzyme Inhibitors; Frontal Lobe; Glycine; GTP-Binding Proteins; Guanosine Diphosphate; Humans; Isoquinolines; N-Methylaspartate; Nerve Tissue Proteins; Neurons; Protein Kinase Inhibitors; Protein Kinases; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Signal Transduction; Staurosporine; Sulfonamides; Thionucleotides | 1996 |
Increased probability of GABA release during withdrawal from morphine.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Adenylyl Cyclase Inhibitors; Adenylyl Cyclases; Animals; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; Dopamine; Dopamine Antagonists; Enzyme Activation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Guinea Pigs; Interneurons; Morphine; Nerve Tissue Proteins; Organophosphorus Compounds; Patch-Clamp Techniques; Phorbol 12,13-Dibutyrate; Picrotoxin; Receptors, GABA-A; Salicylamides; Serotonin; Signal Transduction; Staurosporine; Strychnine; Substance Withdrawal Syndrome; Tegmentum Mesencephali; Thionucleotides | 1997 |
Two populations of kainate receptors with separate signaling mechanisms in hippocampal interneurons.
Topics: 2-Amino-5-phosphonovalerate; Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Bicuculline; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Indoles; Interneurons; Isoxazoles; Kainic Acid; Lidocaine; Maleimides; Naphthalenes; Nerve Tissue Proteins; Patch-Clamp Techniques; Propionates; Protein Kinase C; Pyramidal Cells; Rats; Rats, Wistar; Receptors, Kainic Acid; Receptors, Presynaptic; Signal Transduction; Staurosporine; Virulence Factors, Bordetella | 2000 |
A kainate receptor increases the efficacy of GABAergic synapses.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Benzoates; Benzodiazepines; Cyclic AMP-Dependent Protein Kinases; Enzyme Inhibitors; Evoked Potentials; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; gamma-Aminobutyric Acid; Glycine; Hippocampus; In Vitro Techniques; Interneurons; Kainic Acid; Neurons; Protein Kinase C; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Kainic Acid; Staurosporine; Synapses; Tetradecanoylphorbol Acetate; Tetrodotoxin | 2001 |
Group I mGluR regulates the polarity of spike-timing dependent plasticity in substantia gelatinosa neurons.
Topics: 2-Amino-5-phosphonovalerate; Animals; Boron Compounds; Calcium; Calcium Channels; Chelating Agents; Egtazic Acid; Estrenes; Excitatory Amino Acid Antagonists; Female; Indans; Inositol 1,4,5-Trisphosphate Receptors; Long-Term Potentiation; Long-Term Synaptic Depression; Male; Neuronal Plasticity; Neurons; Pyrrolidinones; Rats; Rats, Sprague-Dawley; Receptors, Cytoplasmic and Nuclear; Receptors, Metabotropic Glutamate; Staurosporine; Substantia Gelatinosa; Synaptic Transmission; Time Factors; Type C Phospholipases | 2006 |