2-amino-5-phosphonovalerate has been researched along with sodium azide in 3 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (33.33) | 18.2507 |
2000's | 1 (33.33) | 29.6817 |
2010's | 1 (33.33) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Damgaard, I; Hoffmann, EK; Jørgensen, NK; Petersen, SF; Schousboe, A | 1 |
Akaike, A; Hashino, A; Kaneko, S; Katsuki, H; Kume, T; Minami, M; Nishikawa, H; Satoh, M; Taguchi, R | 1 |
Carpanese, E; Crema, F; Filpa, V; Frigo, G; Giaroni, C; Marchet, S; Moretto, P; Moro, E | 1 |
3 other study(ies) available for 2-amino-5-phosphonovalerate and sodium azide
Article | Year |
---|---|
Increases in [Ca2+]i and changes in intracellular pH during chemical anoxia in mouse neocortical neurons in primary culture.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amiloride; Animals; Calcium; Cell Hypoxia; Cells, Cultured; Excitatory Amino Acid Antagonists; Extracellular Space; Female; Fluoresceins; Fura-2; Glucose; Hydrogen-Ion Concentration; Mice; Mice, Inbred Strains; Neocortex; Neurons; Sodium Azide; Sodium-Hydrogen Exchangers | 1999 |
Antagonism of NMDA receptors by sigma receptor ligands attenuates chemical ischemia-induced neuronal death in vitro.
Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Cyclopentanes; Deoxyglucose; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fetus; Glucose; Glutamates; Haloperidol; Neurons; Phenazocine; Piperidines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Sodium Azide | 2002 |
Antagonism of ionotropic glutamate receptors attenuates chemical ischemia-induced injury in rat primary cultured myenteric ganglia.
Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Cell Count; Cell Survival; Cells, Cultured; Excitatory Amino Acid Antagonists; Ganglia; Glucose; Immunohistochemistry; Ischemia; Male; Myenteric Plexus; Neurons; Rats; Reactive Oxygen Species; Receptors, AMPA; Receptors, Ionotropic Glutamate; Receptors, Kainic Acid; Receptors, N-Methyl-D-Aspartate; Reperfusion Injury; Sodium Azide | 2014 |