2-amino-5-phosphonovalerate has been researched along with gabapentin in 5 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 4 (80.00) | 29.6817 |
2010's | 1 (20.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Dooley, DJ; Fink, K; Göthert, M; Meder, W | 1 |
Rao, SP; Sikdar, SK | 1 |
Jones, RS; Wetterstrand, C; Yang, J | 1 |
Crawford, DC; Jiang, X; Mennerick, S; Taylor, A | 1 |
5 other study(ies) available for 2-amino-5-phosphonovalerate and gabapentin
Article | Year |
---|---|
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Inhibition of neuronal Ca(2+) influx by gabapentin and subsequent reduction of neurotransmitter release from rat neocortical slices.
Topics: 2-Amino-5-phosphonovalerate; Acetates; Amines; Animals; Aspartic Acid; Calcium; Cyclohexanecarboxylic Acids; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Gabapentin; gamma-Aminobutyric Acid; Glutamates; Male; Neostriatum; Neurons; Neurotransmitter Agents; Norepinephrine; omega-Agatoxin IVA; omega-Conotoxin GVIA; Potassium; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Synaptosomes; Tritium | 2000 |
Estradiol-induced changes in the activity of hippocampal neurons in network culture are suppressed by co-incubation with gabapentin.
Topics: 2-Amino-5-phosphonovalerate; Amines; Analysis of Variance; Animals; Calcium; Cyclohexanecarboxylic Acids; Diagnostic Imaging; Drug Interactions; Estradiol; Excitatory Amino Acid Antagonists; GABA Antagonists; Gabapentin; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Membrane Potentials; Nerve Net; Neurons; Patch-Clamp Techniques; Picrotoxin; Potassium Chloride; Pyridinium Compounds; Quaternary Ammonium Compounds; Rats; Reaction Time; Synaptic Transmission; Time Factors | 2004 |
Felbamate but not phenytoin or gabapentin reduces glutamate release by blocking presynaptic NMDA receptors in the entorhinal cortex.
Topics: 2-Amino-5-phosphonovalerate; Amines; Animals; Anticonvulsants; Cyclohexanecarboxylic Acids; Dizocilpine Maleate; Entorhinal Cortex; Excitatory Amino Acid Antagonists; Felbamate; Gabapentin; gamma-Aminobutyric Acid; Glutamic Acid; In Vitro Techniques; Male; Patch-Clamp Techniques; Phenylcarbamates; Phenytoin; Propylene Glycols; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, Presynaptic | 2007 |
Astrocyte-derived thrombospondins mediate the development of hippocampal presynaptic plasticity in vitro.
Topics: Adenosine; Amines; Animals; Animals, Newborn; Astrocytes; Biophysics; Coculture Techniques; CREB-Binding Protein; Culture Media, Conditioned; Cyclic AMP; Cyclohexanecarboxylic Acids; Dynamin I; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Gabapentin; gamma-Aminobutyric Acid; Hippocampus; Male; N-Methylaspartate; Nerve Tissue Proteins; Neuronal Plasticity; Organ Culture Techniques; Patch-Clamp Techniques; Phosphorylation; Potassium Chloride; Presynaptic Terminals; Protein Kinase Inhibitors; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Statistics, Nonparametric; Synapses; Thionucleotides; Thrombospondins; Valine; Vesicular Glutamate Transport Protein 1 | 2012 |