2-amino-5-phosphonovalerate has been researched along with 1,4-dihydropyridine in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 2 (100.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bito, H; Deisseroth, K; Mermelstein, PG; Tsien, RW | 1 |
Darcy, DP; Isaacson, JS; Murphy, GJ | 1 |
2 other study(ies) available for 2-amino-5-phosphonovalerate and 1,4-dihydropyridine
Article | Year |
---|---|
Critical dependence of cAMP response element-binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials.
Topics: 2-Amino-5-phosphonovalerate; 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; 6-Cyano-7-nitroquinoxaline-2,3-dione; Action Potentials; Animals; Barium; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Channels, L-Type; Calmodulin; Cells, Cultured; Cyclic AMP Response Element-Binding Protein; Dihydropyridines; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Gene Expression; Hippocampus; Ion Channel Gating; N-Methylaspartate; Phosphorylation; Pyramidal Cells; Rats | 2000 |
Intraglomerular inhibition: signaling mechanisms of an olfactory microcircuit.
Topics: 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester; Animals; Animals, Newborn; Bicuculline; Cadmium; Calcium; Calcium Channel Agonists; Calcium Channel Blockers; Calcium Signaling; Chelating Agents; Dendrites; Diagnostic Imaging; Dihydropyridines; Dose-Response Relationship, Drug; Drug Interactions; Egtazic Acid; Electric Stimulation; GABA Antagonists; gamma-Aminobutyric Acid; In Vitro Techniques; Membrane Potentials; Neural Conduction; Neural Inhibition; Neural Networks, Computer; Neurons; Nickel; Nimodipine; Olfactory Bulb; Patch-Clamp Techniques; Phosphinic Acids; Potassium; Propanolamines; Pyrimidines; Rats; Rats, Sprague-Dawley; Signal Transduction; Synapses; Synaptic Transmission; Tetrodotoxin; Time Factors; Valine | 2005 |