2-amino-4-phosphonobutyric acid has been researched along with ibotenic acid in 27 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 8 (29.63) | 18.7374 |
1990's | 16 (59.26) | 18.2507 |
2000's | 3 (11.11) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Bigge, CF; Drummond, JT; Humblet, C; Johnson, G; Malone, TC; Ortwine, DF; Pinter, GW | 1 |
Bellows, DS; Clarke, ID; Diamandis, P; Dirks, PB; Graham, J; Jamieson, LG; Ling, EK; Sacher, AG; Tyers, M; Ward, RJ; Wildenhain, J | 1 |
Garcia-Ladona, FJ; Girard, C; Gombos, G; Palacios, JM | 1 |
Bockaert, J; Do, E; Manzoni, OJ; Poulat, F; Sahuquet, A; Sassetti, I; Sladeczek, FA | 1 |
Cotman, CW; Whittemore, ER | 1 |
Jones, PG; Roberts, PJ | 1 |
Adamson, P; Brammer, MJ; Campbell, IC; Hajimohammadreza, I; Meldrum, BS | 1 |
Boos, R; Müller, F; Wässle, H | 1 |
Johnson, BG; McQuaid, LA; Schoepp, DD; Smith, EC | 1 |
Johnson, BG; Schoepp, DD | 2 |
Cotman, CW; Monaghan, DT; Palmer, E | 1 |
Costa, E; Iadarola, MJ; Nicoletti, F; Wroblewski, JT | 1 |
Cotman, CW; Harris, EW; Stevens, DR | 1 |
Alho, H; Costa, E; Eva, C; Fadda, E; Nicoletti, F; Wroblewski, JT | 1 |
Cowburn, RF; Hardy, JA; Roberts, PJ | 1 |
Miller, RF; Slaughter, MM | 1 |
Cavanni, P; Eistetter, H; Ferraguti, F; Ratti, E; Salvagno, C; Trist, DG | 1 |
Boos, R; Schneider, H; Wässle, H | 1 |
Schultz, K; Weiler, R | 1 |
Hensley, SH; Wu, SM; Yang, XL | 1 |
Turner, JP | 1 |
Haldeman, B; Hampson, DR; Mulvihill, ER; Pickering, DS; Suzdak, PD; Thomsen, C | 1 |
Bau, A; Faarup, P; Foged, C; Kanstrup, A; Suzdak, PD; Thomsen, C | 1 |
Ebert, B; Hansen, JJ; Krogsgaard-Larsen, P; Madsen, U | 1 |
Ebert, B; Madsen, U; Vestergaard, HT; Vogensen, SB | 1 |
Bräuner-Osborne, H; Egebjerg, J; Krogsgaard-Larsen, P; Madsen, U; Nielsen, EO | 1 |
1 review(s) available for 2-amino-4-phosphonobutyric acid and ibotenic acid
Article | Year |
---|---|
Ligands for glutamate receptors: design and therapeutic prospects.
Topics: Animals; Drug Design; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Humans; Ligands; N-Methylaspartate; Receptors, AMPA; Receptors, Glutamate; Receptors, Kainic Acid; Receptors, Metabotropic Glutamate; Synapses | 2000 |
26 other study(ies) available for 2-amino-4-phosphonobutyric acid and ibotenic acid
Article | Year |
---|---|
Generation of N-methyl-D-aspartate agonist and competitive antagonist pharmacophore models. Design and synthesis of phosphonoalkyl-substituted tetrahydroisoquinolines as novel antagonists.
Topics: Binding, Competitive; Isoquinolines; Models, Molecular; Molecular Conformation; N-Methylaspartate; Receptors, N-Methyl-D-Aspartate; Structure-Activity Relationship | 1992 |
Chemical genetics reveals a complex functional ground state of neural stem cells.
Topics: Animals; Cell Survival; Cells, Cultured; Mice; Molecular Structure; Neoplasms; Neurons; Pharmaceutical Preparations; Sensitivity and Specificity; Stem Cells | 2007 |
Autoradiographic characterization of [3H]L-glutamate binding sites in developing mouse cerebellar cortex.
Topics: 2-Amino-5-phosphonovalerate; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Binding, Competitive; Calcium; Cerebellar Cortex; Chlorides; Glutamates; Glutamic Acid; Ibotenic Acid; Kainic Acid; Mice; N-Methylaspartate; Protein Binding; Quisqualic Acid; Receptors, Glutamate; Receptors, Neurotransmitter; Synapses | 1991 |
Pharmacological characterization of the quisqualate receptor coupled to phospholipase C (Qp) in striatal neurons.
Topics: 2-Aminoadipic Acid; 6-Cyano-7-nitroquinoxaline-2,3-dione; Alanine; Aminobutyrates; Animals; Cells, Cultured; Corpus Striatum; Dizocilpine Maleate; Fura-2; Ibotenic Acid; Inositol Phosphates; Kainic Acid; Mice; Neurons; Phorbol 12,13-Dibutyrate; Phosphoserine; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Type C Phospholipases | 1991 |
Agonists selective for phosphoinositide-coupled receptors sensitize neurons to depolarization by L-2-amino-4-phosphonobutanoic acid (L-AP4).
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminobutyrates; Animals; Carbachol; Cerebral Cortex; Cycloleucine; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Neuromuscular Depolarizing Agents; Neurons; Norepinephrine; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Cell Surface; Receptors, Cytoplasmic and Nuclear | 1991 |
Ibotenate stimulates glutamate release from guinea pig cerebrocortical synaptosomes: inhibition by L-2-amino-4-phosphonobutyrate (L-AP4).
Topics: Aminobutyrates; Animals; Cerebral Cortex; Female; Glutamates; Glutamic Acid; Guinea Pigs; Ibotenic Acid; In Vitro Techniques; Male; Neurotoxins; Neurotransmitter Agents; Oxazoles; Synaptosomes | 1990 |
Presynaptic glutamate/quisqualate receptors: effects on synaptosomal free calcium concentrations.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Aminobutyrates; Animals; Calcium; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Ibotenic Acid; Male; Phosphoserine; Quinoxalines; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Glutamate; Receptors, Neurotransmitter; Synapses; Synaptosomes | 1990 |
Actions of excitatory amino acids on brisk ganglion cells in the cat retina.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Anesthesia; Animals; Aspartic Acid; Cats; Electrodes; Glutamates; Glutamic Acid; Ibotenic Acid; Iontophoresis; Kainic Acid; N-Methylaspartate; Photic Stimulation; Quisqualic Acid; Retinal Ganglion Cells | 1990 |
Stereoselectivity and mode of inhibition of phosphoinositide-coupled excitatory amino acid receptors by 2-amino-3-phosphonopropionic acid.
Topics: Alanine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Aspartic Acid; Brain; Hydrolysis; Ibotenic Acid; Inositol Phosphates; Kainic Acid; Male; N-Methylaspartate; Pipecolic Acids; Piperidines; Radioligand Assay; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface; Stereoisomerism | 1990 |
Comparison of excitatory amino acid-stimulated phosphoinositide hydrolysis and N-[3H]acetylaspartylglutamate binding in rat brain: selective inhibition of phosphoinositide hydrolysis by 2-amino-3-phosphonopropionate.
Topics: Alanine; Amino Acids; Aminobutyrates; Animals; Carbachol; Dipeptides; Hippocampus; Hydrolysis; Ibotenic Acid; Male; Phosphatidylinositols; Rats; Rats, Inbred Strains; Tritium | 1989 |
Trans-ACPD, a selective agonist of the phosphoinositide-coupled excitatory amino acid receptor.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Cycloleucine; Hippocampus; Ibotenic Acid; In Vitro Techniques; Kainic Acid; N-Methylaspartate; Neuromuscular Depolarizing Agents; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1989 |
Excitatory amino acid agonist-antagonist interactions at 2-amino-4-phosphonobutyric acid-sensitive quisqualate receptors coupled to phosphoinositide hydrolysis in slices of rat hippocampus.
Topics: Amino Acids; Aminobutyrates; Animals; Carbachol; Drug Interactions; Hippocampus; Hydrolysis; Ibotenic Acid; Male; Norepinephrine; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, Drug | 1988 |
Excitatory amino acid recognition sites coupled with inositol phospholipid metabolism: developmental changes and interaction with alpha 1-adrenoceptors.
Topics: Age Factors; Aminobutyrates; Animals; Aspartic Acid; Drug Interactions; Glutamates; Glutamic Acid; Hippocampus; Hydrolysis; Ibotenic Acid; Norepinephrine; Oxadiazoles; Oxazoles; Phosphatidylinositols; Phosphoserine; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Adrenergic, alpha; Receptors, Amino Acid; Receptors, Cell Surface | 1986 |
Hippocampal cells primed with quisqualate are depolarized by AP4 and AP6, ligands for a putative glutamate uptake site.
Topics: Action Potentials; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Aminocaproates; Animals; Aspartic Acid; Electric Stimulation; Glutamates; Glutamic Acid; Hippocampus; Ibotenic Acid; In Vitro Techniques; Male; Membrane Potentials; N-Methylaspartate; Norleucine; Oxadiazoles; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Glutamate; Receptors, Neurotransmitter | 1987 |
Lesions of putative glutamatergic pathways potentiate the increase of inositol phospholipid hydrolysis elicited by excitatory amino acids.
Topics: Amino Acids; Aminobutyrates; Animals; Aspartic Acid; Colchicine; Corpus Striatum; Glutamates; Glutamic Acid; Hippocampus; Hydrolysis; Ibotenic Acid; Kainic Acid; Male; N-Methylaspartate; Oxadiazoles; Phosphatidylinositols; Quisqualic Acid; Rats; Rats, Inbred Strains; Receptors, Amino Acid; Receptors, Cell Surface | 1987 |
Characterisation of Na+-independent L-[3H]glutamate binding sites in human temporal cortex.
Topics: 2-Amino-5-phosphonovalerate; Aged; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Cell Membrane; Chlorides; Glutamates; Glutamic Acid; Humans; Ibotenic Acid; Kainic Acid; Male; Middle Aged; Oxadiazoles; Quisqualic Acid; Receptors, N-Methyl-D-Aspartate; Receptors, Neurotransmitter; Sodium; Temporal Lobe | 1988 |
Characterization of an extended glutamate receptor of the on bipolar neuron in the vertebrate retina.
Topics: Aminobutyrates; Animals; Cycloleucine; Electrophysiology; Glutamates; Ibotenic Acid; Light; Molecular Conformation; Necturus maculosus; Neurons; Phosphoserine; Photoreceptor Cells; Receptors, Glutamate; Receptors, Neurotransmitter; Retina; Structure-Activity Relationship | 1985 |
Competitive antagonism by phenylglycine derivatives at type I metabotropic glutamate receptors.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Benzoates; Binding, Competitive; Calcium; Cells, Cultured; CHO Cells; Cricetinae; Cycloleucine; Cytidine Diphosphate Diglycerides; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Glycine; Ibotenic Acid; Kainic Acid; Neurons; Neurotoxins; Phosphatidylinositol Diacylglycerol-Lyase; Phosphatidylinositols; Phosphoric Diester Hydrolases; Quisqualic Acid; Receptors, Metabotropic Glutamate; Recombinant Fusion Proteins; Signal Transduction | 1994 |
Voltage- and transmitter-gated currents of all-amacrine cells in a slice preparation of the rat retina.
Topics: 4-Aminopyridine; 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Cobalt; Electrophysiology; gamma-Aminobutyric Acid; Glutamates; Glutamic Acid; Glycine; Ibotenic Acid; In Vitro Techniques; Ion Channel Gating; Ion Channels; Kainic Acid; Membrane Potentials; N-Methylaspartate; Potassium Channels; Quinoxalines; Rats; Receptors, Amino Acid; Retina; Retinal Ganglion Cells; Sodium Channels; Strychnine; Synapses; Tetraethylammonium; Tetraethylammonium Compounds; Tetrodotoxin | 1993 |
Ionotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Aminobutyrates; Animals; Carps; Cell Movement; Cyclopentanes; Dendrites; Ibotenic Acid; N-Methylaspartate; Quisqualic Acid; Receptors, Neurotransmitter; Retina | 1993 |
Identification of glutamate receptor subtypes mediating inputs to bipolar cells and ganglion cells in the tiger salamander retina.
Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Ambystoma; Aminobutyrates; Animals; Glutamates; Ibotenic Acid; In Vitro Techniques; Kainic Acid; Photic Stimulation; Piperazines; Quinoxalines; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Retina; Retinal Ganglion Cells; Synapses | 1993 |
Anion transport blockers inhibit DL-2-amino-4-phosphonobutyrate responses induced by quisqualate in the rat cerebral cortex.
Topics: 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid; 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids; Aminobutyrates; Animals; Cerebral Cortex; Excitatory Amino Acid Antagonists; Ibotenic Acid; In Vitro Techniques; Male; Neuromuscular Depolarizing Agents; Quisqualic Acid; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Glutamate | 1993 |
A pharmacological characterization of the mGluR1 alpha subtype of the metabotropic glutamate receptor expressed in a cloned baby hamster kidney cell line.
Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amino Acids, Diamino; Aminobutyrates; Animals; Binding, Competitive; Cell Line; Cell Membrane; Clone Cells; Cricetinae; Cyanobacteria Toxins; Dizocilpine Maleate; Glutamates; Glutamic Acid; Ibotenic Acid; Inositol Phosphates; Kidney; Kinetics; Neurotoxins; Pertussis Toxin; Quinoxalines; Quisqualic Acid; Receptors, Glutamate; Recombinant Proteins; Transfection; Virulence Factors, Bordetella | 1993 |
Effects of bromohomoibotenate on metabotropic glutamate receptors.
Topics: Aminobutyrates; Animals; Binding, Competitive; Cell Line; Cerebral Cortex; Cricetinae; Cyclic AMP; Cycloleucine; Dose-Response Relationship, Drug; Glutamic Acid; Hippocampus; Hydrolysis; Ibotenic Acid; Kidney; Membranes; Phosphatidylinositols; Quinoxalines; Receptors, AMPA; Receptors, Metabotropic Glutamate; Stereoisomerism | 1994 |
The non-depolarizing D-form of bromohomoibotenic acid enhances depolarizations evoked by the L-form or quisqualate.
Topics: Aminobutyrates; Animals; Brain; Electrophysiology; Ibotenic Acid; In Vitro Techniques; Quisqualic Acid; Rats; Stereoisomerism | 1993 |
Analogues of homoibotenic acid show potent and selective activity following sensitisation by quisqualic acid.
Topics: Aminobutyrates; Animals; Calcium Chloride; Cerebral Cortex; Electrophysiology; Excitatory Amino Acid Agonists; Glutamic Acid; Glycine; Ibotenic Acid; In Vitro Techniques; Male; Neurons; Quisqualic Acid; Rats; Rats, Sprague-Dawley; Synaptosomes | 2004 |