2-amino-14-16-dimethyloctadecan-3-ol has been researched along with moniliformin* in 2 studies
2 other study(ies) available for 2-amino-14-16-dimethyloctadecan-3-ol and moniliformin
Article | Year |
---|---|
Influence of carbohydrates on secondary metabolism in Fusarium avenaceum.
Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose), five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose) and three polysaccharides (dextrin, inulin and xylan) were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis. Topics: Carbohydrates; Cyclobutanes; Depsipeptides; Ergosterol; Fusarium; Mycotoxins; Naphthoquinones; Polyenes; Pyrones; Secondary Metabolism; Sphingolipids | 2013 |
Pathogenicity, symptom development, and mycotoxin formation in wheat by Fusarium species frequently isolated from sugar beet.
Crop rotations with putative non-host crops such as sugar beet are often recommended to reduce Fusarium head blight (FHB) in cereals. However, recent observations have shown pathogenic, endophytic, and saprotrophic colonization of sugar beet with various Fusarium spp. Therefore, strains of seven species frequently isolated from sugar beet were tested for pathogenicity on wheat. Species-specific symptoms on heads and kernels were evaluated and the grains were analyzed for 20 mycotoxins with liquid chromatography-tandem mass spectrometry. Fusarium graminearum, F. culmorum, and F. cerealis from sugar beet caused typical FHB symptoms and mycotoxin contamination with deoxynivalenol and nivalenol, while a high incidence of black point was observed in heads inoculated with F. tricinctum or F. equiseti. Black point kernels revealed 3.4 to 14.5 times higher mycotoxin concentrations than symptomless grains, containing enniatin B1 at 38,000 μg/kg, moniliformin at 4,900 μg/kg, and 2-amino-14,16-dimethyloctadecan-3-ol at 5,500 μg/kg, as well as monoacetoxyscirpenol at 2,600 μg/kg and nivalenol at 3,800 μg/kg. Monitoring of these latter two species in the field is hampered by the lack of typical head symptoms after infection. In further experiments, the impact of sugar beet residues on FHB severity and the correlation between mycotoxin contamination of cereal lots and the amount of black point have to be evaluated. Topics: Beta vulgaris; Cyclobutanes; Depsipeptides; Edible Grain; Fusarium; Mycotoxins; Plant Diseases; Plant Leaves; Plant Roots; Species Specificity; Sphingolipids; Trichothecenes; Triticum | 2011 |