2-Phenylethyl-3-phenyl-2-propenoate and caffeic-acid-phenethyl-ester

2-Phenylethyl-3-phenyl-2-propenoate has been researched along with caffeic-acid-phenethyl-ester* in 2 studies

Other Studies

2 other study(ies) available for 2-Phenylethyl-3-phenyl-2-propenoate and caffeic-acid-phenethyl-ester

ArticleYear
Inhibitory activities of propolis and its promising component, caffeic acid phenethyl ester, against amyloidogenesis of human transthyretin.
    Journal of medicinal chemistry, 2014, Nov-13, Volume: 57, Issue:21

    Transthyretin (TTR) is a homotetrameric serum protein associated with amyloidoses such as familial amyloid polyneuropathy and senile systemic amyloidosis. The amyloid fibril formation of TTR can be inhibited through stabilization of the TTR tetramer by the binding of small molecules. In this study, we examined the inhibitory potency of caffeic acid phenethyl ester (CAPE) and its derivatives. Thioflavin T assay showed that CAPE suppressed the amyloid fibril formation of TTR. Comparative analysis of the inhibitory potencies revealed that phenethyl ferulate was the most potent among the CAPE derivatives. The binding of phenethyl ferulate and the selected compounds to TTR were confirmed by the 8-anilino-1-naphthalenesulfonic acid displacement and X-ray crystallography. It was also demonstrated that Bio 30, which is a CAPE-rich commercially available New Zealand propolis, inhibited TTR amyloidogenesis and stabilized the TTR tetramer. These results suggested that a propolis may be efficient for preventing TTR amyloidosis.

    Topics: Amyloid Neuropathies, Familial; Amyloidosis; Caffeic Acids; Coumaric Acids; Masoprocol; Phenylethyl Alcohol; Prealbumin; Propolis

2014
Caffeic acid phenethyl ester inhibits alpha-melanocyte stimulating hormone-induced melanin synthesis through suppressing transactivation activity of microphthalmia-associated transcription factor.
    Journal of natural products, 2013, Aug-23, Volume: 76, Issue:8

    Caffeic acid phenethyl ester (1), a natural compound found in various plants and propolis, is a well-known anti-inflammatory, immunomodulatory, and cytotoxic agent. The present study aimed to investigate the molecular events underlying the antimelanogenic activity of 1 in alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16-F10 melanoma cells. In this investigation, 1 effectively reduced α-MSH-stimulated melanin synthesis by suppressing expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein-1 (TRP-1), and tyrosinase-related protein-2 (TRP-2), although this compound did not directly inhibit tyrosinase enzyme activity. On the other hand, the expression and nuclear translocation of microphthalmia-associated transcription factor (MITF) as a key transcription factor for tyrosinase expression regulating melanogenesis were not affected by treatment with 1. The upstream signaling pathways including cAMP response element-binding protein (CREB), glycogen synthase kinase-3β (GSK-3β), and Akt for activation and expression of MITF were also not influenced by 1. Interestingly, 1 inhibited transcriptional activity of a tyrosinase promoter by suppressing the interaction of MITF protein with an M-box containing a CATGTG motif on the tyrosinase promoter. Given the important role of MITF in melanogenesis, suppression of 1 on the function of MITF to transactivate tyrosinase promoter may present a novel therapeutic approach to treat hyperpigmentation disorders.

    Topics: alpha-MSH; Animals; Blotting, Western; Caffeic Acids; Cyclic AMP Response Element-Binding Protein; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Interferon Type I; Intramolecular Oxidoreductases; Levodopa; Melanins; Mice; Microphthalmia-Associated Transcription Factor; Molecular Structure; Monophenol Monooxygenase; Oxidoreductases; Phenylethyl Alcohol; Pregnancy Proteins; Transcriptional Activation

2013