2-7-4--trihydroxyisoflavanone and formononetin

2-7-4--trihydroxyisoflavanone has been researched along with formononetin* in 3 studies

Other Studies

3 other study(ies) available for 2-7-4--trihydroxyisoflavanone and formononetin

ArticleYear
cDNA cloning and biochemical characterization of S-adenosyl-L-methionine: 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway.
    Plant & cell physiology, 2003, Volume: 44, Issue:2

    Formononetin (7-hydroxy-4'-methoxyisoflavone, also known as 4'-O-methyldaidzein) is an essential intermediate of ecophysiologically active leguminous isoflavonoids. The biosynthetic pathway to produce 4'-methoxyl of formononetin has been unknown because the methyl transfer from S-adenosyl-L-methionine (SAM) to 4'-hydroxyl of daidzein has never been detected in any plants. A hypothesis that SAM: daidzein 7-O-methyltransferase (D7OMT), an enzyme with a different regiospecificity, is involved in formononetin biosynthesis through its intracellular compartmentation with other enzymes recently prevails, but no direct evidence has been presented. We proposed a new scheme of formononetin biosynthesis involving 2,7,4'-trihydroxyisoflavanone as the methyl acceptor and subsequent dehydration. We now cloned a cDNA encoding SAM: 2,7,4'-trihydroxyisoflavanone 4'-O-methyltransferase (HI4'OMT) through the screening of functionally expressed Glycyrrhiza echinata (Fabaceae) cDNAs. The reaction product, 2,7-dihydroxy-4'-methoxyisoflavanone, was unambiguously identified. Recombinant G. echinata D7OMT did not show HI4'OMT activity, and G. echinata HI4'OMT protein free from D7OMT was partially purified. HI4'OMT is thus concluded to be distinct from D7OMT, and their distant phylogenetic relationship was further presented. HI4'OMT may be functionally identical to (+)-6a-hydroxymaackiain 3-OMT of pea. Homologous cDNAs were found in several legumes, and the catalytic function of the Lotus japonicus HI4'OMT was verified, indicating that HI4'OMT is the enzyme of formononetin biosynthesis in general legumes.

    Topics: Amino Acid Sequence; Cloning, Molecular; DNA, Complementary; Fabaceae; Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant; Glycyrrhiza; Isoflavones; Lotus; Molecular Sequence Data; Phylogeny; Phytoalexins; Plant Extracts; Plant Proteins; Sequence Analysis, DNA; Sequence Homology, Amino Acid; Sesquiterpenes; Substrate Specificity; Terpenes

2003
Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation and 7-O-methylation of daidzein during isoflavonoid phytoalexin biosynthesis.
    The Plant cell, 2001, Volume: 13, Issue:12

    The bioactive isoflavonoids of the Leguminosae often are methylated on the 4'-position of their B-rings. Paradoxically, reverse genetic evidence implicates alfalfa isoflavone O-methyltransferase (IOMT) in the biosynthesis of 4'-O-methylated isoflavonoids such as the phytoalexin medicarpin in vivo, whereas biochemical studies indicate that IOMT has strict specificity for methylation of the A-ring 7-hydroxyl of daidzein, the presumed substrate for O-methylation, in vitro. Radiolabeling and isotope dilution studies now confirm that daidzein is not an intermediate in isoflavonoid phytoalexin biosynthesis in alfalfa. Furthermore, protein gel blot analysis and confocal microscopy of a transiently expressed IOMT-green fluorescent protein fusion in alfalfa leaves show that the operationally soluble IOMT localizes to endomembranes after elicitation of the isoflavonoid pathway. We propose that IOMT colocalizes with the endoplasmic reticulum-associated isoflavone synthase cytochrome P450 to ensure rapid B-ring methylation of the unstable 2,4',7-trihydroxyisoflavanone product of isoflavone synthase, thereby preventing its dehydration to daidzein and subsequent A-ring methylation by free IOMT. In this way, metabolic channeling at the entry point into isoflavonoid phytoalexin biosynthesis protects an unstable intermediate from an unproductive metabolic conversion.

    Topics: Benzopyrans; Cells, Cultured; Endoplasmic Reticulum; Flavanones; Flavonoids; Ion Channels; Isoflavones; Isotope Labeling; Medicago sativa; Methylation; Methyltransferases; Microsomes; Oxygenases; Phytoalexins; Plant Extracts; Plant Leaves; Plants, Genetically Modified; Pterocarpans; Sesquiterpenes; Terpenes

2001
New scheme of the biosynthesis of formononetin involving 2,7,4'-trihydroxyisoflavanone but not daidzein as the methyl acceptor.
    Bioscience, biotechnology, and biochemistry, 2000, Volume: 64, Issue:10

    Glycyrrhiza echinata cell-free extract produced isoformononetin by the 7-O-transmethylation of daidzein from S-adenosyl-L-methionine (SAM). When the yeast microsome expressing 2-hydroxyisoflavanone synthase was mixed with the cell-free extract and incubated with liquiritigenin and SAM, formononetin emerged. Furthermore, the cell-free extract yielded formononetin on incubation with 2,7,4'-trihydroxyisoflavanone and SAM. We propose a novel pathway of formononetin biosynthesis involving 2,7,4'-trihydroxyisoflavanone as the methyl acceptor.

    Topics: Cell-Free System; Chromatography, High Pressure Liquid; Isoflavones

2000