2,6-xylenol has been researched along with 4-chlorophenol in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 1 (25.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 0 (0.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Kubinyi, H | 1 |
Caron, G; Ermondi, G | 1 |
Kapur, S; Rosario, M; Selassie, CD; Verma, RP | 1 |
Aronson, JK; Bufler, J; Dengler, R; Haeseler, G; Hecker, H; Leuwer, M | 1 |
4 other study(ies) available for 2,6-xylenol and 4-chlorophenol
Article | Year |
---|---|
Quantitative structure-activity relationships. 2. A mixed approach, based on Hansch and Free-Wilson Analysis.
Topics: Animals; Aspergillus niger; Bacillus cereus; Bacillus subtilis; Enterococcus faecalis; Haemophilus; Hydrazines; Methacrylates; Microbial Sensitivity Tests; Models, Chemical; Molecular Conformation; Mycobacterium tuberculosis; Phenols; Quaternary Ammonium Compounds; Rats; Regression Analysis; Rifamycins; Sarcina; Staphylococcus aureus; Structure-Activity Relationship; Thyronines; Thyroxine | 1976 |
Calculating virtual log P in the alkane/water system (log P(N)(alk)) and its derived parameters deltalog P(N)(oct-alk) and log D(pH)(alk).
Topics: 1-Octanol; Alkanes; Hydrogen-Ion Concentration; Least-Squares Analysis; Mathematics; Models, Chemical; Models, Molecular; Solvents; Water | 2005 |
Cellular apoptosis and cytotoxicity of phenolic compounds: a quantitative structure-activity relationship study.
Topics: Animals; Antineoplastic Agents; Apoptosis; Caspases; Cell Line, Tumor; Drug Resistance, Neoplasm; Drug Screening Assays, Antitumor; Enzyme Activation; Mice; Molecular Conformation; Phenols; Quantitative Structure-Activity Relationship; Vinblastine | 2005 |
An improved model for the binding of lidocaine and structurally related local anaesthetics to fast-inactivated voltage-operated sodium channels, showing evidence of cooperativity.
Topics: Algorithms; Anesthetics, Local; Cell Line; Chlorophenols; Dose-Response Relationship, Drug; Electrophysiology; Gene Expression; Humans; Ion Channel Gating; Lidocaine; Patch-Clamp Techniques; Sodium Channels; Structure-Activity Relationship; Xylenes | 2004 |