2-5-dimethoxy-4-bromoamphetamine--(r)-isomer and phenethylamine

2-5-dimethoxy-4-bromoamphetamine--(r)-isomer has been researched along with phenethylamine* in 2 studies

Other Studies

2 other study(ies) available for 2-5-dimethoxy-4-bromoamphetamine--(r)-isomer and phenethylamine

ArticleYear
The 2014 Philip S. Portoghese Medicinal Chemistry Lectureship: The "Phenylalkylaminome" with a Focus on Selected Drugs of Abuse.
    Journal of medicinal chemistry, 2017, 04-13, Volume: 60, Issue:7

    The phenylalkylamine, particularly the phenylethylamine, moiety is a common structural feature found embedded in many clinically approved agents. Greater still is its occurrence in drugs of abuse. The simplest phenylethylamine, 2-phenylethylamine itself, is without significant central action when administered at moderate doses, but fairly simple structural modifications profoundly impact its pharmacology and result in large numbers of useful pharmacological tools, agents with therapeutic potential, and in drugs of abuse (e.g., hallucinogens, central stimulants, empathogens), the latter of which are the primary focus here. In vivo drug discrimination techniques and in vitro receptor/transporter methods have been applied to understand the actions of these phenylalkylamines and their mechanisms of action. Thus far, depending upon pendent substituents, certain receptors (e.g., serotonin receptors) and monoamine transporters (i.e., serotonin, dopamine, and norepinephrine transporters) have been implicated as playing major roles in the actions of these abused agents in a complex and, at times, interwoven manner.

    Topics: Animals; Central Nervous System Stimulants; Chemistry, Pharmaceutical; Dopamine; Drug Discovery; Hallucinogens; Humans; Illicit Drugs; Norepinephrine; Phenethylamines; Psychotropic Drugs; Receptors, Serotonin; Serotonin

2017
Substituted naphthofurans as hallucinogenic phenethylamine-ergoline hybrid molecules with unexpected muscarinic antagonist activity.
    Journal of medicinal chemistry, 1998, Jun-04, Volume: 41, Issue:12

    A series of substituted racemic naphthofurans were synthesized as "hybrid" molecules of the two major prototypical hallucinogenic drug classes, the phenethylamines and the tryptamines/ergolines. Although it was hypothesized that these new agents might possess high affinity for the serotonin 5-HT2A/2C receptor subtypes, unexpected affinity for muscarinic receptors was observed. The compounds initially synthesized for this study were (+/-)-anti- and syn-4-amino-6-methoxy-2a,3,4,5-tetrahydro-2H-naphtho[1,8-bc]furan (4a,b), respectively, and their 8-bromo derivatives 4c,d, respectively. The brominated primary amines 4c,d were assayed initially for activity in the two-lever drug discrimination (DD) paradigm in rats trained to discriminate saline from LSD tartrate (0. 08 mg/kg). Also, 4c,d were evaluated for their ability to compete against agonist and antagonist radioligands at cloned human 5-HT2A, 5-HT2B, and 5-HT2C receptors. After the syn diastereomers were found to have the highest activity in these preliminary assays, the N-alkylated analogues syn-N,N-dimethyl-4-amino-6-methoxy-2a,3,4, 5-tetrahydro-2H-naphtho[1,8-bc]furan (4e) and syn-N, N-dipropyl-4-amino-6-methoxy-2a,3,4,5-tetrahydro-2H-naphtho[1, 8-bc]furan (4f) were prepared and assayed for their affinities at [3H]ketanserin-labeled 5-HT2A and [3H]-8-OH-DPAT-labeled 5-HT1A sites. All of the molecules tested had relatively low affinity for serotonin receptors, yet a preliminary screen indicated that compound 4d had affinity for muscarinic receptors. Thus, 4b,d,e were evaluated for their affinity at muscarinic M1-M5 receptors and also assessed for their functional characteristics at the M1 and M2 isoforms. Compound 4d had affinities of 12-33 nM at all of the muscarinic sites, with 4b,e having much lower affinity. All three compounds fully antagonized the effects of carbachol at the M1 receptor, while only 4d completely antagonized carbachol at the M2 receptor. The fact that the naphthofurans lack LSD-like activity suggests that they do not bind to the serotonin receptor in a way such that the tricyclic naphthofuran nucleus is bioisosteric with, and directly superimposable upon, the A, B, and C rings of LSD. This also implies, therefore, that the hallucinogenic phenethylamines cannot be directly superimposed on LSD in a common binding orientation for these two chemical classes, contrary to previous hypotheses.

    Topics: Animals; Binding, Competitive; Brain; Cell Line; Cricetinae; Discrimination Learning; Ergolines; Furans; Hallucinogens; Humans; Lysergic Acid Diethylamide; Male; Mice; Muscarinic Antagonists; Phenethylamines; Rats; Rats, Sprague-Dawley; Receptors, Muscarinic; Receptors, Serotonin; Recombinant Proteins; Stereoisomerism; Structure-Activity Relationship; Tetrahydronaphthalenes

1998