2-4-dinitrophenylhydrazine has been researched along with 2-2--azobis(2-amidinopropane)* in 2 studies
2 other study(ies) available for 2-4-dinitrophenylhydrazine and 2-2--azobis(2-amidinopropane)
Article | Year |
---|---|
Beta-carotene and protein oxidation: effects of ascorbic acid and alpha-tocopherol.
The effect of beta-carotene on protein oxidation was examined under different oxygen (O(2)) tensions and with other antioxidants: alpha-tocopherol, ascorbic acid, and mixtures of antioxidants. Human serum albumin (HSA) was incubated with 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) to induce protein oxidation (carbonyl formation), under 15, 150, and 760 torr of O(2) tension. Antioxidant activity was related to O(2) tension, antioxidant concentrations and interaction between mixtures of antioxidants: (1) Under 15 torr of O(2), incubating HSA with AAPH, 1. 6 microM beta-carotene, 80 microM alpha-tocopherol, 160 microM ascorbic acid, and mixtures (0.1 microM beta-carotene, 5.0 microM alpha-tocopherol and 10 microM ascorbic acid) resulted in 24, 29, 39, and 44% reduction of carbonyl formation, respectively. (2) Under 150 torr of O(2) tension, the antioxidant effect of beta-carotene was decreased by 4% but increasing O(2) tension did not diminish the antioxidant effects of alpha-tocopherol, ascorbic acid, or antioxidant mixtures. (3). Under 760 torr of O(2) tension, adding 1. 6 microM beta-carotene resulted in 26% more carbonyl formation. (4) Under 760 torr of O(2) tension, the antioxidant effect of ascorbic acid was decreased 32% compared to what was observed at 150 torr of O(2) tension. Changes in O(2) tension had no effect on the antioxidant effect of alpha-tocopherol. The mixture of antioxidants inhibited carbonyl formation by 37% and was 7% less effective than that of 15 and 150 torr of O(2) tension. High concentration of beta-carotene produces more protein oxidation in the presence of high O(2) tension by a prooxidant mechanism. Mixtures of beta-carotene, alpha-tocopherol, and ascorbic acid provided better protective effects on protein oxidation than any single compound. Topics: Amidines; Antioxidants; Ascorbic Acid; beta Carotene; Enzyme-Linked Immunosorbent Assay; Humans; Oxidants; Oxidation-Reduction; Oxygen; Phenylhydrazines; Serum Albumin; Vitamin E | 2000 |
Effects of reactive oxygen species on brain synaptic plasma membrane Ca(2+)-ATPase.
The regulation of free intracellular calcium [Ca2+]i is altered in neurons from the aged brain, possibly due to reductions in the activity of Ca2+ transporters. The plasma membrane Ca(2+)-ATPase (PMCA) plays a critical role in Ca2+ homeostasis, and its kinetic properties change in aged rat brain. These changes could be due to oxidative modification of PMCA as a result of age-related chronic oxidative stresses. The present studies were undertaken to determine the sensitivity of the neuronal PMCA to in vitro exposure of synaptic plasma membranes (SPMs) to reactive oxygen species (ROS). We examined the effects of three oxidants including peroxyl radicals generated by azo-initiators, 2,2'-Azobis 2-amidinopropane dihydrochloride (AAPH) and 4,4'-Azobis 14-cyanovaleric acid (ACVA), hydrogen peroxide (H2O2), and peroxynitrite (ONOO-). Synaptic plasma membranes briefly exposed to these oxidants were analyzed for functional and structural alterations in PMCA. Although all three oxidants led to significant loss of PMCA activity, the effect of ONOO- was the most potent, followed by peroxyl radicals and H2O2. Kinetic analysis of PMCA activity after oxidant treatment showed decreases in Vmax without significant changes in K(act). Immunoblots revealed oxidant-induced cross-linking of PMCA molecules that were partially reversed under reducing conditions and completely reversed with addition of urea. The PMCA appears to be very sensitive to inhibition by ROS and hence may be a target of oxidative stress in the aging brain. Reduction in its activity may contribute to age-related alterations in neuronal [Ca2+]i regulation. Topics: Age Factors; Amidines; Animals; Azo Compounds; Brain; Calcium; Calcium-Transporting ATPases; Hydrogen Peroxide; Kinetics; Male; Nitrates; Oxidative Stress; Phenylhydrazines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Synaptic Membranes; Tyrosine; Urea; Valerates | 1999 |