2-4-dinitrofluorobenzene-sulfonic-acid and 3-nitrotyrosine

2-4-dinitrofluorobenzene-sulfonic-acid has been researched along with 3-nitrotyrosine* in 3 studies

Other Studies

3 other study(ies) available for 2-4-dinitrofluorobenzene-sulfonic-acid and 3-nitrotyrosine

ArticleYear
Adelmidrol, a Palmitoylethanolamide Analogue, as a New Pharmacological Treatment for the Management of Inflammatory Bowel Disease.
    Molecular pharmacology, 2016, Volume: 90, Issue:5

    Leukocyte infiltration, improved levels of intercellular adhesion molecule 1 (ICAM-1), and oxidative stress in the colon are the principal factors in inflammatory bowel disease. The goal of the current study was to explore the effects of adelmidrol, an analog of the anti-inflammatory fatty acid amide signaling molecule palmitoylethanolamide, in mice subjected to experimental colitis. Additionally, to clarify whether the protective action of adelmidrol is dependent on the activation of peroxisome proliferator-activated receptors (PPARs), we investigated the effects of a PPARγ antagonist, GW9662, on adelmidrol action. Adelmidrol (10 mg/kg daily, o.s.) was tested in a murine experimental model of colitis induced by intracolonic administration of dinitrobenzene sulfonic acid. Nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase, as well as tumor necrosis factor-α and interleukin-1β, were significantly increased in colon tissues after dinitrobenzene sulfonic acid administration. Immunohistochemical staining for ICAM-1, P-selectin, nitrotyrosine, and poly(ADP)ribose showed a positive staining in the inflamed colon. Treatment with adelmidrol decreased diarrhea, body weight loss, and myeloperoxidase activity. Adelmidrol treatment, moreover, reduced nuclear factor-κB translocation, cyclooxygenase-2, and phosphoextracellular signal-regulated kinase expression; proinflammatory cytokine release; and the incidence of nitrotyrosine and poly(ADP)ribose in the colon. It also decreased the upregulation of ICAM-1 and P-selectin. Adelmidrol treatment produced a reduction of Bax and an intensification of Bcl-2 expression. This study clearly demonstrates that adelmidrol exerts important anti-inflammatory effects that are partly dependent on PPARγ, suggesting that this molecule may represent a new pharmacologic approach for inflammatory bowel disease treatment.

    Topics: Amides; Animals; Anti-Inflammatory Agents; Apoptosis; Body Weight; Colitis; Cyclooxygenase 2; Cytokines; Dicarboxylic Acids; Dinitrofluorobenzene; Ethanolamines; Extracellular Signal-Regulated MAP Kinases; Inflammatory Bowel Diseases; Intercellular Adhesion Molecule-1; Lipid Peroxidation; Male; Mice; NF-kappa B; P-Selectin; Palmitic Acids; Peroxidase; Phosphorylation; PPAR alpha; PPAR gamma; Receptor, Cannabinoid, CB2; Signal Transduction; Tyrosine

2016
High-density lipoproteins reduce the intestinal damage associated with ischemia/reperfusion and colitis.
    Shock (Augusta, Ga.), 2004, Volume: 21, Issue:4

    High-density lipoproteins (HDLs) have been shown to reduce the organ injury and mortality in animal models of shock by reducing the expression of adhesion molecules and proinflammatory enzymes. However, there is limited evidence that HDL treatment reduces inflammation. As inflammation plays an important role in the development of colitis as well as ischemia/reperfusion (I/R) injury of the intestine, we have investigated the effects of HDL in animal models of associated with gut injury and inflammation (splanchnic artery occlusion [SAO] shock and dinitrobenzene sulfonic acid [DNBS]-induced colitis). We report here for the first time that the administration of reconstituted HDLs (recHDLs; 80 mg/kg i.v. bolus 30 min prior to ischemia in the SAO-shock model or 40 mg/kg i.v. every 24 h in the colitis model) exerts potent anti-inflammatory effects (e.g., reduced inflammatory cell infiltration and histological injury, and delayed the development of the clinical signs) in vivo. Furthermore, recHDL reduced the staining for nitrotyrosine and poly(ADP-ribose) (immunohistochemistry) and the expression of intercellular adhesion molecule-1 in the ileum of SAO-shocked rats and in the colon from DNBS-treated rats. Thus, recHDL reduces the inflammation caused by intestinal I/R and colitis. HDLs may represent a novel therapeutic approach for the therapy of inflammation of the gut.

    Topics: Animals; Colitis; Dinitrofluorobenzene; Immunohistochemistry; Inflammation; Intercellular Adhesion Molecule-1; Intestines; Lipoproteins, HDL; Male; Rats; Rats, Sprague-Dawley; Reperfusion Injury; Tyrosine

2004
Melatonin reduces dinitrobenzene sulfonic acid-induced colitis.
    Journal of pineal research, 2001, Volume: 30, Issue:1

    Inflammatory bowel disease (IBD) is characterized by oxidative and nitrosative stress, leukocyte infiltration, and up-regulation of intercellular adhesion molecule 1 (ICAM-1) expression in the colon. The aim of this study was to examine the effects of the pineal secretory product melatonin in rats subjected to experimental colitis. Colitis was induced in rats by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). Rats experienced bloody diarrhea and a significant loss of body weight. Four days after DNBS administration, the colon damage was characterized by areas of mucosal necrosis. Neutrophil infiltration (indicated by myeloperoxidase [MPO] activity in the mucosa) was associated with up-regulation of ICAM-1, expression of P-selectin, and high levels of malondialdehyde (MDA). Immunohistochemistry for nitrotyrosine and poly (ADP-ribose) synthetase (PARS) showed an intense staining in the inflamed colon. Staining of colon tissue sections obtained from DNBS-treated rats with an anti-cycloxygenase-2 (COX-2) antibody showed a diffuse staining of the inflamed tissue. Furthermore, expression of inducible nitric oxide synthase (iNOS) was found mainly in the macrophages of the inflamed colons from DNBS-treated rats. Treatment with melatonin (15 mg/kg daily, intraperitoneally) significantly reduced the appearance of diarrhea and the loss of body weight. This was associated with a remarkable amelioration of the disruption of the colonic architecture, as well as a significant reduction of colonic MPO activity and MDA levels. Melatonin also reduced the appearance of nitrotyrosine and PARS immunoreactivity in the colon, as well as reducing the up-regulation of ICAM-1 and the expression of P-selectin. The intensity and degree of the stainings for COX-2 and iNOS were markedly reduced in tissue sections obtained from melatonin-treated rats. The results of the this study suggest that the administration of melatonin might be beneficial for the treatment of IBD.

    Topics: Animals; Colitis; Colon; Dinitrofluorobenzene; Fluorescent Antibody Technique, Indirect; Free Radical Scavengers; Immunohistochemistry; Intercellular Adhesion Molecule-1; Male; Malondialdehyde; Melatonin; Nitric Oxide Synthase; Nitric Oxide Synthase Type II; P-Selectin; Peroxidase; Poly Adenosine Diphosphate Ribose; Rats; Rats, Sprague-Dawley; Tyrosine

2001