2-4-3--5--tetrahydroxystilbene has been researched along with oleuropein* in 16 studies
4 review(s) available for 2-4-3--5--tetrahydroxystilbene and oleuropein
Article | Year |
---|---|
Phenolic Compounds from Virgin Olive Oil: Approaches for Their Synthesis and Analogues.
Virgin olive oil (VOO) is the main fat consumed by populations in the Mediterranean basin, and phenolic compounds, minor components of this fat, are known to be responsible for diverse health benefits when consumed in a regular diet. According to numerous investigations, these benefits are mostly related to phenols such as tyrosol and hydroxytyrosol and secoiridoid derivatives such as ligstroside, oleuropein, oleocanthal and oleacein. These compounds are present in low concentrations, and for some of them, standards are not commercially available, hampering studies on the mechanisms underlying their biological activity. In order to contribute to a better knowledge of the bioactivity of these compounds and their metabolites, they must be available with high purity and in sufficient amounts for the assays. Chemical synthesis has been considered a convenient way to obtain these compounds. This Review will focus on the synthesis of representative VOO compounds, namely, ligstroside, oleuropein, oleocanthal, oleacein and analogues. Topics: Olive Oil; Phenols | 2022 |
Semi-synthesis as a tool for broadening the health applications of bioactive olive secoiridoids: a critical review.
Covering: 2005 up to 2020Olive bioactive secoiridoids are recognized as natural antioxidants with multiple beneficial effects on human health. Nevertheless, the study of their biological activity has also disclosed some critical aspects associated with their application. Firstly, only a few of them can be extracted in large amounts from their natural matrix, namely olive leaves, drupes, oil and olive mill wastewater. Secondly, their application as preventive agents and drugs is limited by their low membrane permeability. Thirdly, the study of their biological fate after administration is complicated by the absence of pure analytical standards. Accordingly, efficient synthetic methods to obtain natural and non-natural bioactive phenol derivatives have been developed. Among them, semi-synthetic protocols represent efficient and economical alternatives to total synthesis, combining efficient extraction protocols with efficient catalytic conversions to achieve reasonable amounts of active molecules. The aim of this review is to summarize the semi-synthetic protocols published in the last fifteen years, covering 2005 up to 2020, which can produce natural olive bioactive phenols scarcely available by extractive procedures, and new biophenol derivatives with enhanced biological activity. Moreover, the semi-synthetic protocols to produce olive bioactive phenol derivatives as analytical standards are also discussed. A critical analysis of the advantages offered by semi-synthesis compared to classical extraction methods or total synthesis protocols is also performed. Topics: Aldehydes; Cyclopentane Monoterpenes; Iridoid Glucosides; Iridoids; Olea; Olive Oil; Phenols; Phenylethyl Alcohol | 2021 |
Potential Uses of Olive Oil Secoiridoids for the Prevention and Treatment of Cancer: A Narrative Review of Preclinical Studies.
The Mediterranean diet (MD) is a combination of foods mainly rich in antioxidants and anti-inflammatory nutrients that have been shown to have many health-enhancing effects. Extra-virgin olive oil (EVOO) is an important component of the MD. The importance of EVOO can be attributed to phenolic compounds, represented by phenolic alcohols, hydroxytyrosol, and tyrosol, and to secoiridoids, which include oleocanthal, oleacein, oleuropein, and ligstroside (along with the aglycone and glycosidic derivatives of the latter two). Each secoiridoid has been studied and characterized, and their effects on human health have been documented by several studies. Secoiridoids have antioxidant, anti-inflammatory, and anti-proliferative properties and, therefore, exhibit anti-cancer activity. This review summarizes the most recent findings regarding the pharmacological properties, molecular targets, and action mechanisms of secoiridoids, focusing attention on their preventive and anti-cancer activities. It provides a critical analysis of preclinical, in vitro and in vivo, studies of these natural bioactive compounds used as agents against various human cancers. The prospects for their possible use in human cancer prevention and treatment is also discussed. Topics: Aldehydes; Animals; Anti-Inflammatory Agents; Antineoplastic Agents; Antioxidants; Cyclopentane Monoterpenes; Diet, Mediterranean; Glucosides; Humans; Iridoid Glucosides; Iridoids; Neoplasms; Olive Oil; Phenols; Phenylethyl Alcohol; Pyrans | 2021 |
The Health Benefiting Mechanisms of Virgin Olive Oil Phenolic Compounds.
Virgin olive oil (VOO) is credited as being one of the many healthful components associated with the Mediterranean diet. Mediterranean populations experience reduced incidence of chronic inflammatory disease states and VOO is readily consumed as part of an everyday Mediterranean dietary pattern. VOO is rich in phenolic compounds and the health promoting benefits of these phenolics are now established. Recent studies have highlighted the biological properties of VOO phenolic compounds elucidating their anti-inflammatory activities. This paper will review current knowledge on the anti-inflammatory and nutrigenomic, chemoprotective and anti-atherosclerotic activities of VOO phenolics. In addition the concentration, metabolism and bioavailability of specific phenolic compounds will be discussed. The evidence presented in the review concludes that oleurepein, hydroxytyrosol and oleocanthal have potent pharmacological activities in vitro and in vivo; however, intervention studies with biologically relevant concentrations of these phenolic compounds are required. Topics: Aldehydes; Animals; Anti-Inflammatory Agents; Biological Availability; Cyclopentane Monoterpenes; Dietary Supplements; Humans; Iridoid Glucosides; Iridoids; Olive Oil; Phenols; Phenylethyl Alcohol | 2016 |
12 other study(ies) available for 2-4-3--5--tetrahydroxystilbene and oleuropein
Article | Year |
---|---|
Next-generation sequencing reveals altered gene expression and enriched pathways in triple-negative breast cancer cells treated with oleuropein and oleocanthal.
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by poor prognosis and limited treatment options. Oleuropein and oleocanthal are bioactive chemicals found in extra-virgin olive oil; they have been shown to have anti-cancer potential. In this study, we examined the inhibitory effects of these two natural compounds, on MDA-MB-231 and MDA-MB-468 TNBC cell lines. The human TNBC MDA-MB-231 and MDA-MB-468 cell lines were treated with oleuropein or oleocanthal at ranging concentrations for 48 h. After determining the optimum concentration to reach IC50, using the sulforhodamine B assay, total RNA was extracted after 12, 24, and 48 h from treated and untreated cells. Poly(A)-RNA selection was conducted, followed by library construction and RNA sequencing. Differential gene expression (DEG) analysis was performed to identify DEGs between treated and untreated cells. Pathway analysis was carried out using the KEGG and GO databases. Oleuropein and oleocanthal considerably reduced the proliferation of TNBC cells, with oleocanthal having a slightly stronger effect than oleuropein. Furthermore, multi-time series RNA sequencing showed that the expression profile of TNBC cells was significantly altered after treatment with these compounds, with temporal dynamics and groups of genes consistently affected at all time points. Pathway analysis revealed several significant pathways associated with TNBC, including cell death, apoptotic process, programmed cell death, response to stress, mitotic cell cycle process, cell division, and cancer progression. Our findings suggest that oleuropein and oleocanthal have potential therapeutic benefits for TNBC and can be further investigated as alternative treatment options. Topics: Gene Expression; High-Throughput Nucleotide Sequencing; Humans; RNA; Triple Negative Breast Neoplasms | 2023 |
Development and physicochemical characterization of nanoliposomes with incorporated oleocanthal, oleacein, oleuropein and hydroxytyrosol.
Oleocanthal, oleacein, oleuropein and hydroxytyrosol comprise characteristic polyphenols of olive with high biological value. However, stability problems hinder their further investigation. Thus, in the present study they were incorporated in nanoliposomes by thin film hydration method. The particles sizes, PDI, zeta-potential and physicochemical stabilities of nanoliposomes were evaluated by light scattering methods while FTIR, XRD, TGA and DSC methods were carried out for further physicochemical characterization. Their micromorphology was illustrated by negative-staining TEM and Cryo-TEM, revealing well-dispersed round-shaped vesicles. According to in vitro release studies, oleocanthal and oleacein were rapidly released in a higher percentage than oleuropein and hydroxytyrosol and compatible with the Ritger-Peppas model release mechanism while only oleuropein liposomes were governed by anomalous diffusion of non-Fickian diffusion. Antioxidant assays showed that nanoliposomes presented comparable activity with pure compounds enabling them as suitable carriers for the delivery of olive active biophenols in the human organism. Topics: Aldehydes; Cyclopentane Monoterpenes; Humans; Iridoid Glucosides; Olea; Phenols; Phenylethyl Alcohol | 2022 |
In Silico Approach for the Evaluation of the Potential Antiviral Activity of Extra Virgin Olive Oil (EVOO) Bioactive Constituents Oleuropein and Oleocanthal on Spike Therapeutic Drug Target of SARS-CoV-2.
Since there is an urgent need for novel treatments to combat the current coronavirus disease 2019 (COVID-19) pandemic, in silico molecular docking studies were implemented as an attempt to explore the ability of selected bioactive constituents of extra virgin olive oil (EVOO) to act as potent SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) antiviral compounds, aiming to explore their ability to interact with SARS-CoV-2 Spike key therapeutic target protein. Our results suggest that EVOO constituents display substantial capacity for binding and interfering with Spike (S) protein, both wild-type and mutant, via the receptor-binding domain (RBD) of Spike, or other binding targets such as angiotensin-converting enzyme 2 (ACE2) or the RBD-ACE2 protein complex, inhibiting the interaction of the virus with host cells. This in silico study provides useful insights for the understanding of the mechanism of action of the studied compounds at a molecular level. From the present study, it could be suggested that the studied active phytochemicals could potentially inhibit the Spike protein, contributing thus to the understanding of the role that they can play in future drug designing and the development of anti-COVID-19 therapeutics. Topics: Antiviral Agents; Binding Sites; COVID-19 Drug Treatment; Humans; Molecular Docking Simulation; Olive Oil; Peptidyl-Dipeptidase A; Protein Binding; SARS-CoV-2; Spike Glycoprotein, Coronavirus | 2022 |
The phenolic profile of virgin olive oil is influenced by malaxation conditions and determines the oxidative stability.
Phenolic compounds largely contribute to the nutraceutical properties of virgin olive oil (VOO), the organoleptic attributes and the shelf life due to their antioxidant capabilities. Due to the relevance of malaxation in the oil extraction process, we tested the effects of malaxation time on the concentrations of relevant phenolic compounds in VOO, and we evaluated the influence of performing malaxation under vacuum. An increase in malaxation time significantly decreased the concentrations of aglycone isomers of oleuropein and ligstroside but, conversely, increased the oleocanthal and oleacein contents. Additionally, malaxation under vacuum led to an increase in phenolic contents compared to standard conditions carried out at atmospheric pressure. Finally, we explored the possibility of predicting the VOO oxidative stability on the basis of the phenolic profile, and a model (R Topics: Aldehydes; Cyclopentane Monoterpenes; Fatty Acids; Food Handling; Glucosides; Iridoid Glucosides; Iridoids; Olive Oil; Oxidation-Reduction; Phenols; Pyrans; Temperature; Time Factors | 2020 |
Oleacein inhibits STAT3, activates the apoptotic machinery, and exerts anti-metastatic effects in the SH-SY5Y human neuroblastoma cells.
Several studies published in the last decade suggest that the beneficial role of extra-virgin olive oil (EVOO) in human health is mostly attributable to the main secoiridoid derivatives (oleuropein, oleocanthal, and oleacein). Anti-cancer properties have also been demonstrated for certain compounds present in small quantities in EVOO, including oleuropein and hydroxytyrosol, which have been extensively studied, while minor attention has been given to the most abundant secoiridoid oleacein. The aim of our research was to study the molecular mechanisms underlying the anti-proliferative and anti-metastatic capacity of oleacein in the SH-SY5Y human neuroblastoma cell line. Our results demonstrate that oleacein is able to reduce the proliferation of the SH-SY5Y cells by blocking the cell cycle in the S phase and inducing apoptotic cell death through the increase in both Bax and p53 as well as a reduction in the Bcl-2 expression and STAT3 phosphorylation. Moreover, oleacein caused reduction in the SH-SY5Y cell adhesion and migration. Overall, these findings indicate that oleacein exerts anti-cancer effects against neuroblastoma cells, suggesting a promising role as a candidate against this type of cancer. Topics: Aldehydes; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Cell Proliferation; Cyclopentane Monoterpenes; Fibroblasts; Humans; Iridoid Glucosides; Iridoids; Neuroblastoma; Olive Oil; Phenols; STAT3 Transcription Factor | 2020 |
Biomimetic Synthesis of Oleocanthal, Oleacein, and Their Analogues Starting from Oleuropein, A Major Compound of Olive Leaves.
Oleocanthal and oleacein are known for a wide range of beneficial activities in human health and the prevention of diseases. The inability to isolate significant and pure amounts of these natural compounds and their demanding synthesis lead to the development of an efficient, five-step, three-pot procedure. The synthesis is performed by a convenient biomimetic approach, starting from oleuropein, an abundant raw material in olive leaves, through the mixed anhydride of oleoside. The method is stereocontrolled and provides an efficient approach to the synthesis of various oleocanthal analogues; thus, a small library of four compounds was prepared with 35-45% overall yield. Topics: Aldehydes; Biomimetics; Cyclopentane Monoterpenes; Iridoid Glucosides; Molecular Structure; Olea; Phenols; Plant Leaves; Stereoisomerism; Structure-Activity Relationship | 2020 |
The involvement of phenolic-rich extracts from Galician autochthonous extra-virgin olive oils against the α-glucosidase and α-amylase inhibition.
'Brava' and 'Mansa de Figueiredo' extra-virgin olive oils (EVOOs) are two varieties identified from north-western Spain. A systematic phenolic characterization of the studied oils was undertaken by LC-ESI-IT-MS. In addition, the role of dietary polyphenols from these EVOOs has been evaluated against the inhibition of key enzymes (α-glucosidase and α-amylase) in the management of diabetes mellitus (DM). Oleuropein and ligstroside derivatives comprised 83% and 67% of the total phenolic compounds in 'Brava' and 'Mansa de Figueiredo' EVOOs, respectively. The main secoiridoids from oleuropein were DOA (3,4-DHPEA-EDA, 59 and 22 mg kg Topics: Aldehydes; alpha-Amylases; alpha-Glucosidases; Cyclopentane Monoterpenes; Diabetes Mellitus, Type 2; Flavonoids; Glucosides; Glycoside Hydrolase Inhibitors; Hypoglycemic Agents; Iridoid Glucosides; Iridoids; Olive Oil; Phenols; Plant Extracts; Pyrans; Spain | 2019 |
Multivariate approach to assess the chemical composition of Italian virgin olive oils as a function of variety and harvest period.
Fatty acids, phenolic compounds, and tocopherols of Coratina, Bosana, Semidana, and Tonda di Cagliari virgin olive oils, were measured over a 45-day harvest period. Phenolic composition was the primary factor distinguishing Bosana, Tonda di Cagliari, and Semidana, whereas fatty acids differentiated Coratina and the other cultivars. Harvest period principally influenced oleacein, oleocanthal, oleuropein and ligstroside aglycones, and flavonoids. High phenolic content was observed for Coratina (1039-688 mg/kg) and Bosana (788-592 mg/kg). A drastic decrease in phenolic content was observed in Semidana (529-134 mg/kg) and Tonda di Cagliari (507-142 mg/kg) during the harvest period. These two cultivars also had low MUFA/PUFA (6.0-4.0 and 4.9-3.2 respectively), suggesting that these varieties should be harvested earlier in the season. These results provide information to producers for improved management of the harvesting process, which is strongly affected by varietal factors. Topics: Agriculture; Aldehydes; Cyclopentane Monoterpenes; Fatty Acids; Flavonoids; Food Analysis; Glucosides; Iridoid Glucosides; Iridoids; Italy; Olea; Olive Oil; Phenols; Pyrans; Species Specificity; Tocopherols | 2019 |
Inhibitory effect of Ligustrum vulgare leaf extract on the development of neuropathic pain in a streptozotocin-induced rat model of diabetes.
Chronic hyperalgesia and allodynia associated with progressive damage of peripheral neurons are the most prevalent complications of diabetes mellitus. Plants belonging to the family of Oleaceae were traditionally used in folk medicine for the management of diabetes.. The aim of this study was to investigate whether an aqueous extract from the leaves of Ligustrum vulgare (common privet) could be useful to target neuropathic pain in a rat streptozotocin (STZ) model of diabetes.. The chemical composition of the aqueous extract from privet leaf was characterized with the UHPLC-DAD-MS method and the analytical quantification of its constituents was performed with HPLC-DAD. Mechanical hyperalgesia and allodynia were evaluated with the Randall-Selitto and von Frey tests.. Our investigation revealed the presence of secoiridoids: oleacein (23.48 ± 0.87 mg/g), oleocanthal (8.44 ± 0.08 mg/g), oleuropein (1.50 ± 0.01 mg/g), as well as phenylpropanoids: echinacoside (6.46 ± 0.07 mg/g), verbascoside (4.03 ± 0.04 mg/g) and p-coumaroyl glucarates in the dried aqueous extract of privet leaves. Behavioral data indicated that chronic intraperitoneal administration of the extract (50-200 mg/kg) for 21 days resulted in a decrease in diabetes-induced hyperalgesia and allodynia. Blood glucose levels remained unaltered, while body weight and water intake decreased significantly.. The aqueous privet leaf extract could serve useful in facilitating treatment of painful diabetic neuropathy. Additionally, the study showed that the antihyperalgesic activity of Ligustrum vulgare leaf extract is not likely related to its antihyperglycemic properties. Topics: Aldehydes; Animals; Chromatography, High Pressure Liquid; Cyclopentane Monoterpenes; Diabetes Mellitus, Experimental; Diabetic Neuropathies; Glucosides; Glycosides; Hyperalgesia; Iridoid Glucosides; Iridoids; Ligustrum; Male; Neuralgia; Phenols; Plant Extracts; Plant Leaves; Rats; Streptozocin | 2018 |
Cultivar influence on variability in olive oil phenolic profiles determined through an extensive germplasm survey.
Despite the evident influence of the cultivar on olive oil composition, few studies have been devoted to exploring the variability of phenols in a representative number of monovarietal olive oils. In this study, oil samples from 80 cultivars selected for their impact on worldwide oil production were analyzed to compare their phenolic composition by using a method based on LC-MS/MS. Secoiridoid derivatives were the most concentrated phenols in virgin olive oil, showing high variability that was significantly due to the cultivar. Multivariate analysis allowed discrimination between four groups of cultivars through their phenolic profiles: (i) richer in aglycon isomers of oleuropein and ligstroside; (ii) richer in oleocanthal and oleacein; (iii) richer in flavonoids; and (iv) oils with balanced but reduced phenolic concentrations. Additionally, correlation analysis showed no linkage among aglycon isomers and oleocanthal/oleacein, which can be explained by the enzymatic pathways involved in the metabolism of both oleuropein and ligstroside. Topics: Aldehydes; Biological Variation, Population; Chromatography, Liquid; Cyclopentane Monoterpenes; Flavonoids; Glucosides; Iridoid Glucosides; Iridoids; Multivariate Analysis; Olea; Olive Oil; Phenols; Phytochemicals; Pyrans; Tandem Mass Spectrometry | 2018 |
One-step semisynthesis of oleacein and the determination as a 5-lipoxygenase inhibitor.
The dialdehydes oleacein (2) and oleocanthal (4) are closely related to oleuropein (1) and ligstroside (3), the two latter compounds being abundant iridoids of Olea europaea. By exploiting oleuropein isolated from the plant leaf extract, an efficient procedure has been developed for a one-step semisynthesis of oleacein under Krapcho decarbomethoxylation conditions. Highlighted is the fact that 5-lipoxygenase is a direct target for oleacein with an inhibitory potential (IC50: 2 μM) more potent than oleocanthal (4) and oleuropein (1). This enzyme catalyzes the initial steps in the biosynthesis of pro-inflammatory leukotrienes. Taken together, the methodology presented here offers an alternative solution to isolation or total synthesis for the procurement of oleacein, thus facilitating the further development as a potential anti-inflammatory agent. Topics: Aldehydes; Anti-Inflammatory Agents; Arachidonate 5-Lipoxygenase; Cyclopentane Monoterpenes; Glucosides; Humans; Iridoid Glucosides; Iridoids; Lipoxygenase Inhibitors; Molecular Structure; Olea; Phenols; Plant Extracts; Plant Leaves; Pyrans | 2014 |
Syntheses of (-)-oleocanthal, a natural NSAID found in extra virgin olive oil, the (-)-deacetoxy-oleuropein aglycone, and related analogues.
Phenolic compounds extracted from extra virgin olive oil have attracted considerable recent attention. One of the components, (-)-oleocanthal (1), an inhibitor of the COX-1 and COX-2 enzymes, possesses similar potency as the NSAID ibuprofen. In this, a full account, we disclose the first- and now second-generation syntheses of both enantiomers of the oleocanthals, as well as the first synthesis of the closely related (-)-deacetoxy-oleuropein aglycone and a series of related analogues for structure activity studies. To demonstrate the utility of the second-generation synthesis, multigram quantities of (-)-oleocanthal were prepared in 10 steps (14% overall yield) from commercially available D-lyxose. Topics: Aldehydes; Anti-Inflammatory Agents, Non-Steroidal; Biological Products; Cerium; Chlorides; Cyclization; Cyclopentane Monoterpenes; Ethylenes; Iridoid Glucosides; Iridoids; Ketones; Molecular Structure; Olive Oil; Phenols; Plant Oils; Pyrans | 2007 |