2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with ifenprodil* in 14 studies
14 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and ifenprodil
Article | Year |
---|---|
Acute administration of ketamine attenuates the impairment of social behaviors induced by social defeat stress exposure as juveniles via activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors.
The impairment of social behaviors induced by social defeat stress exposure as juveniles is resistant to some antidepressants and an antipsychotic, although the underlying mechanisms and/or therapeutic target are not yet clear. In this study, we investigated the involvement of the glutamatergic neuronal system in the impairment of social behaviors in this model, as this system is known to be involved in many central pathologies. Acute administration of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist and subsequent stimulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, attenuated the expression of impairment of social behaviors. Lack of the NMDA receptor GluN2A subunit or acute administration of ifenprodil, an NMDA receptor GluN2B subunit antagonist, did not cause an effect. There were no significant changes in NMDA function, as determined by the ratios of phosphorylated NMDA receptor subunits in the prefrontal cortex and hippocampus. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione, a selective AMPA receptor antagonist, prevented the effect of ketamine on the expression of impairment of social behaviors. On the contrary, the ratio of phosphorylated AMPA receptor GluA1 subunit in the hippocampus was significantly increased in the non-tested, defeated group. Ketamine increased the level of total protein, but not the ratio of phosphorylated GluA1 in the hippocampus of the non-tested, defeated group. In conclusion, exposure to social defeat stress as juveniles may induce the expression of impairment of social behaviors in adolescents via functional changes in GluA1. Activators of AMPA receptor signaling, such as ketamine, may constitute a novel treatment strategy for stress-related psychiatric disorders in adolescents with adverse juvenile experiences. Topics: Age Factors; Animals; Hippocampus; Ketamine; Male; Mice; Piperidines; Prefrontal Cortex; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Social Behavior; Stress, Psychological | 2019 |
A combination of NMDA and AMPA receptor antagonists retards granule cell dispersion and epileptogenesis in a model of acquired epilepsy.
Epilepsy may arise following acute brain insults, but no treatments exist that prevent epilepsy in patients at risk. Here we examined whether a combination of two glutamate receptor antagonists, NBQX and ifenprodil, acting at different receptor subtypes, exerts antiepileptogenic effects in the intrahippocampal kainate mouse model of epilepsy. These drugs were administered over 5 days following kainate. Spontaneous seizures were recorded by video/EEG at different intervals up to 3 months. Initial trials showed that drug treatment during the latent period led to higher mortality than treatment after onset of epilepsy, and further, that combined therapy with both drugs caused higher mortality at doses that appear safe when used singly. We therefore refined the combined-drug protocol, using lower doses. Two weeks after kainate, significantly less mice of the NBQX/ifenprodil group exhibited electroclinical seizures compared to vehicle controls, but this effect was lost at subsequent weeks. The disease modifying effect of the treatment was associated with a transient prevention of granule cell dispersion and less neuronal degeneration in the dentate hilus. These data substantiate the involvement of altered glutamatergic transmission in the early phase of epileptogenesis. Longer treatment with NBQX and ifenprodil may shed further light on the apparent temporal relationship between dentate gyrus reorganization and development of spontaneous seizures. Topics: Animals; Anticonvulsants; Dentate Gyrus; Disease Models, Animal; Drug Administration Schedule; Drug Therapy, Combination; Electroencephalography; Epilepsy; Humans; Kainic Acid; Male; Mice; Neurons; Piperidines; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Time Factors; Treatment Outcome | 2017 |
mGluR5 and NMDA receptors drive the experience- and activity-dependent NMDA receptor NR2B to NR2A subunit switch.
In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in vivo. Topics: Adaptation, Physiological; Animals; Animals, Newborn; Electric Stimulation; Enzyme Inhibitors; Estrenes; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Hippocampus; In Vitro Techniques; Male; Mice; Mice, Knockout; Models, Biological; N-Methylaspartate; Piperidines; Pyramidal Cells; Pyridines; Pyrrolidinones; Quinoxalines; Rats; Rats, Wistar; Receptor, Metabotropic Glutamate 5; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate; Synapses; Thiazoles; Time Factors; Visual Cortex | 2011 |
Distinct modes of AMPA receptor suppression at developing synapses by GluN2A and GluN2B: single-cell NMDA receptor subunit deletion in vivo.
During development there is an activity-dependent switch in synaptic N-Methyl-D-aspartate (NMDA) receptor subunit composition from predominantly GluN2B to GluN2A, though the precise role of this switch remains unknown. By deleting GluN2 subunits in single neurons during synaptogenesis, we find that both GluN2B and GluN2A suppress AMPA receptor expression, albeit by distinct means. Similar to GluN1, GluN2B deletion increases the number of functional synapses, while GluN2A deletion increases the strength of unitary connections without affecting the number of functional synapses. We propose a model of excitatory synapse maturation in which baseline activation of GluN2B-containing receptors prevents premature synapse maturation until correlated activity allows induction of functional synapses. This activity also triggers the switch to GluN2A, which dampens further potentiation. Furthermore, we analyze the subunit composition of synaptic NMDA receptors in CA1 pyramidal cells, provide electrophysiological evidence for a large population of synaptic triheteromeric receptors, and estimate the subunit-dependent open probability. Topics: Animals; Dendrites; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Hippocampus; Mice; Patch-Clamp Techniques; Piperidines; Protein Subunits; Pyramidal Cells; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synapses | 2011 |
Impaired axonal transport and neurofilament compaction occur in separate populations of injured axons following diffuse brain injury in the immature rat.
Diffuse brain injury is a leading cause of mortality in infants and children under 4 years of age and results in cognitive deficits in survivors. The anatomic basis for these behavioral deficits may be traumatic axonal injury (TAI), which manifests as impaired axonal transport (IAT) and neurofilament compaction (NFC), and may occur as a result of glutamate receptor activation. The extent of IAT and NFC was evaluated at 6, 24 and 72 h following non-contusive brain trauma in the 17 day-old rat to examine the causal relationship between these two pathologic entities; in addition, the effect of antagonists to the ionotropic glutamate receptors on TAI was evaluated. At 6 h post-injury, NFC was observed primarily in the cingulum, and appeared as swollen axons and terminal bulbs. By 24 h, swollen axons were additionally present in the corpus callosum and lateral white matter tracts, and appeared to increase in diameter. At 72 h, the extent of axonal swellings exhibiting compacted neurofilaments appeared to decrease, and was accompanied by punctate immunoreactivity within axon tracts suggestive of axonal degeneration. Although NFC was present in the same anatomical locations where axonal accumulation of amyloid precursor protein (APP) has been observed, double-label immunohistochemistry revealed no evidence of colocalization of compacted neurofilament and APP. Pre-injury treatment with either the NMDA receptor antagonist, ifenprodil, or the AMPA receptor antagonist, NBQX, had no significant effect on the extent of TAI, suggesting that excitotoxicity may not be a primary mechanism underlying TAI. Importantly, these data are indicative of the heterogeneity of mechanisms underlying TAI in the traumatically-injured immature brain. Topics: Amyloid beta-Protein Precursor; Animals; Axonal Transport; Axons; Brain; Brain Injuries; Excitatory Amino Acid Antagonists; Female; Immunohistochemistry; Intermediate Filaments; Male; Neurons; Photomicrography; Piperidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Time Factors | 2009 |
Rapid bidirectional switching of synaptic NMDA receptors.
Synaptic NMDA-type glutamate receptors (NMDARs) play important roles in synaptic plasticity, brain development, and pathology. In the last few years, the view of NMDARs as relatively fixed components of the postsynaptic density has changed. A number of studies have now shown that both the number of receptors and their subunit compositions can be altered. During development, the synaptic NMDARs subunit composition changes, switching from predominance of NR2B-containing to NR2A-containing receptors, but little is known about the mechanisms involved in this developmental process. Here, we report that, depending on the pattern of NMDAR activation, the subunit composition of synaptic NMDARs is under extremely rapid, bidirectional control at neonatal synapses. This switching, which is at least as rapid as that seen with AMPARs, will have immediate and dramatic consequences on the integrative capacity of the synapse. Topics: Aging; Animals; Brain; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Long-Term Potentiation; Male; Organ Culture Techniques; Piperidines; Protein Subunits; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission; Time Factors | 2007 |
Differential roles of NR2A and NR2B-containing NMDA receptors in cortical long-term potentiation and long-term depression.
It is widely believed that long-term depression (LTD) and its counterpart, long-term potentiation (LTP), involve mechanisms that are crucial for learning and memory. However, LTD is difficult to induce in adult cortex for reasons that are not known. Here we show that LTD can be readily induced in adult cortex by the activation of NMDA receptors (NMDARs), after inhibition of glutamate uptake. Interestingly there is no need to activate synaptic NMDARs to induce this LTD, suggesting that LTD is triggered primarily by extrasynaptic NMDA receptors. We also find that de novo LTD requires the activation of NR2B-containing NMDAR, whereas LTP requires activation of NR2A-containing NMDARs. Surprisingly another form of LTD, depotentiation, requires activation of NR2A-containing NMDARs. Therefore, NMDARs with different synaptic locations and subunit compositions are involved in various forms of synaptic plasticity in adult cortex. Topics: 2-Amino-5-phosphonovalerate; Animals; Aspartic Acid; Cerebral Cortex; Dicarboxylic Acids; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Long-Term Potentiation; Long-Term Synaptic Depression; N-Methylaspartate; Neurons; Neurotransmitter Uptake Inhibitors; Phenols; Picrotoxin; Piperidines; Protein Subunits; Pyrrolidines; Quinoxalines; Rats; Receptors, Metabotropic Glutamate; Receptors, N-Methyl-D-Aspartate | 2004 |
Barrel cortex critical period plasticity is independent of changes in NMDA receptor subunit composition.
The regulation of NMDA receptor (NMDAR) subunit composition and expression during development is thought to control the process of thalamocortical afferent innervation, segregation, and plasticity. Thalamocortical synaptic plasticity in the mouse is dependent on NMDARs containing the NR2B subunit, which are the dominant form during the "critical period" window for plasticity. Near the end of the critical period there is a gradual increase in the contribution of NR2A subunits that happens in parallel to changes in NMDAR-mediated current kinetics. However, no extension of the critical period occurs in NR2A knockout mice, despite the fact that NMDA subunit composition and current kinetics remain immature past the end of the critical period. These data suggest that regulation of NMDAR subunit composition is not essential for closing the critical period plasticity window in mouse somatosensory barrel cortex. Topics: Animals; Brain Mapping; Critical Period, Psychological; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Gene Expression Regulation, Developmental; Long-Term Potentiation; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuronal Plasticity; Piperidines; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Somatosensory Cortex; Synapses; Thalamus | 2001 |
Non-N-methyl-D-aspartate (NMDA) receptor antagonist 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulphonamide (NBQX) decreases functional disorders in cytotoxic brain oedema.
N-methyl-D-aspartate (NMDA) and non-NMDA receptors were found to be involved in development of functional disorders caused by hexachlorophene. In order to specify the role of glutamate receptors we studied the protective effects of the selective antagonist of the kainate/(+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor/channel 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulphonamide disodium (NBQX) and of the non-competitive NMDA receptor antagonist ifenprodil tartrate on coordinative motor behaviour of adult male Wistar rats as assessed in a simple 'ladder-test'. Neurotoxic injury of the cerebrum after hexachlorophene administration and putative amelioration after treatment with test substances was demonstrated histologically. Hexachlorophene-induced motor disturbance remitted spontaneously when stopping the noxis, but remittance occurred significantly earlier when NBQX [0.45 and 0.6 mg/kg intraperitoneal (i.p.)] was applied as well. Ifenprodil (0.15 to 1.2 mg/kg) did not improve the motor function. Vacuolation of white matter of the whole cerebrum was observed after 3 weeks of treatment with hexachlorophene. These morphological alterations caused by hexachlorophene treatment [central nervous system (CNS) vacuolation] spontaneously revert only after 5-6 weeks. The 5-day duration with test substances was too short for remission of vacuolation which thus may not apply to the situation after treatment with glutamate antagonists, despite improvement of motor function. The results suggest that kainate/AMPA receptor channels are at least partially involved in the mechanism of brain damage induced by hexachlorophene, however, the polyamine binding site of the NMDA receptor evidently is not involved. Topics: Animals; Behavior, Animal; Brain; Brain Edema; Excitatory Amino Acid Antagonists; Hexachlorophene; Male; Motor Activity; Motor Skills Disorders; Piperidines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 2000 |
Protective effect of GV150526A on the glutamate-induced changes in basal and electrically-stimulated cytosolic Ca++ in primary cultured cerebral cortical cells.
Glutamate-induced changes in intracellular free Ca++ concentration ([Ca++]i) were recorded in resting and electrically-stimulated primary cultures of rat cerebral cortical cells, employing the Ca++ indicator Fura 2. A brief (10 min) exposure to glutamate led to a concentration-dependent basal [Ca++]i increase, measured 30 min after glutamate removal. In order to unmask more subtle modifications in [Ca++]i movements associated with neurosecretion, the glutamate effect was also studied in electrically-stimulated cells. The application of trains (10 s) of electrical pulses (intensity 30 mA, duration 1 ms) induced frequency-related Na+- and Ca++-dependent [Ca++]i transients. A 5 min treatment with 50 microM glutamate reduced to 48% the electrically-evoked [Ca++]i transients, evaluated 30 min after glutamate challenge. The neuroprotective effect of sodium 4,6-dichloro-3-[(E)-3-(N-phenyl)propenamide]indole-2-carboxylate (GV150526A), a new indole derivative with high affinity and selectivity for the glycine site of the NMDA receptor-channel complex, was compared with that of DL-2-amino-5-phosphonopentanoic acid (AP5), ifenprodil, 7-chlorokynurenic acid and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)-quinoxaline (NBQX) on glutamate-induced [Ca++]i changes in resting and electrically-stimulated cells. In both experimental conditions, GV150526A showed to be the most potent compound. Moreover, GV150526A and 7-chlorokynurenic acid were 2-3 times more active in stimulated neurons than in resting neurons, indicating a major involvement of the glycine site in the protection of the cells kept in an active state. Topics: Animals; Calcium; Cells, Cultured; Cerebral Cortex; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Glutamic Acid; Indoles; Piperidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 1998 |
Neurotoxicity of polyamines and pharmacological neuroprotection in cultures of rat cerebellar granule cells.
We have studied in a well-characterized in vitro neuronal system, cultures of cerebellar granule cells, the toxicity of polyamines endogenously present in the brain: spermine, spermidine, and putrescine. Twenty-four-hour exposure of mature (8 days in vitro) cultures to 1-500 microM spermine resulted in a dose-dependent death of granule cells, with the half-maximal effect being reached below 50 microM concentration. Putrescine was moderately toxic but only at 500 microM concentration. Spermidine was tested at 50 and 100 microM concentration and its toxicity was evaluated to be about 50% that of spermine. Neuronal death caused by spermine occurred, at least in part, by apoptosis. Spermine toxicity was completely prevented by competitive (CGP 39551) and noncompetitive (MK-801) antagonists of the NMDA receptor, but was unaffected by a non-NMDA antagonist (NBQX) or by antagonists of the polyamine site present on the NMDA receptor complex, such as ifenprodil. A partial protection from spermine toxicity was obtained through the simultaneous presence of free radical scavengers or through inhibition of the free radical-generating enzyme nitric oxide synthase, known to be partially effective against direct glutamate toxicity. The link between spermine toxicity and glutamate was further strengthened by the fact that, under culture conditions in which glutamate toxicity was ineffective or much reduced, spermine toxicity was absent or very much decreased. Exposure to spermine was accompanied by a progressive accumulation of glutamate in the medium of granule cell cultures. This was attributed to glutamate leaking out from dying or dead cells and was substantially prevented by the simultaneous presence of MK-801 or CGP 39551. The present results demonstrate that polyamines are toxic to granule cells in culture and that this toxicity is mediated through the NMDA receptor by interaction of exogenously added polyamines with endogenous glutamate released by neurons in the medium. The involvement of brain polyamines, in particular spermine and spermidine, in excitotoxic neuronal death is strongly supported by our present results. Topics: 2-Amino-5-phosphonovalerate; Animals; Apoptosis; Aspartic Acid; Butylated Hydroxytoluene; Cells, Cultured; Cerebellar Cortex; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Female; Free Radical Scavengers; Glutamic Acid; L-Lactate Dehydrogenase; Male; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Nitric Oxide Synthase; Nitroarginine; Piperidines; Putrescine; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Spermidine; Spermine; Vitamin E | 1997 |
Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice.
The behavioural and convulsant effects of imipenem (Imi), a carbapenem derivative, were studied after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration in DBA/2 mice, a strain genetically susceptible to sound-induced seizures. The anticonvulsant effects of some excitatory amino acid antagonists and muscimol (Msc), a GABAA agonist, against seizures induced by i.p. or i.c.v. administration of Imi were also evaluated. The present study demonstrated that the order of anticonvulsant activity in our epileptic model, after i.p. administration, was (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)-cyclohepten-5,10-imine maleate (MK-801) > (+/-)(E)-2-amino-4-methyl-5-phosphono-3-pentenoate ethyl ester (CGP 39551) > 3-((+/-)-2-carboxypiperazin-4-yl)propenyl-1-phosphonic acid (CPPene) > 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CCP) > 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX). Ifenprodil, a compound acting on the polyamine site of NMDA receptor complex was unable to protect against seizures induced by Imi, suggesting that the poliamine site did not exert a principal role in the genesis of seizures induced by Imi. In addition, the order of anticonvulsant potency in our epileptic model, after i.c.v. administration, was CPPene > MK-801 > Msc > (-)-2-amino-7-phosphonic acid (AP7) > gamma-D-glutamylaminomethylsulphonate (gamma-D-GAMS) > NBQX > kynurenic acid (KYNA) > 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). The relationship between the different site of action and the anticonvulsant activity of these derivatives was discussed. Although the main mechanism of Imi induced seizures cannot be easily determined, potential interactions with the receptors of the excitatory amino acid neurotransmitters exists. In fact, antagonists of excitatory amino acids are able to increase the threshold for the seizures or to prevent the seizures induced by Imi. In addition, Imi acts on the central nervous system by inhibition of GABA neurotransmission and Msc, a selective GABAA agonist, was able to protect against seizures induced by Imi. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Dizocilpine Maleate; Excitatory Amino Acids; Glutamine; Imipenem; Kynurenic Acid; Mice; Mice, Inbred DBA; Muscimol; Piperazines; Piperidines; Quinoxalines; Seizures | 1995 |
AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h.
The selective alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX) and the selective N-methyl-D-aspartate (NMDA) receptor antagonists MK 801 and ifenprodil were administered to Mongolian gerbils following a 5 min period of bilateral carotid artery occlusion. NBQX when given 4, 6 or 24 h after ischaemia gave a reduced loss of hippocampal CA1 neurones compared to control animals receiving vehicle only. Dizocilipine (MK 801) (1-10 mg/kg i.p.) and ifenprodil (a total of 45 mg/kg i.p.) gave no protection. The peak levels of NBQX obtained in the cerebrospinal fluid of gerbils receiving the neuroprotective dose (3 x 30 mg/kg i.p.) was 1 microM. In gerbil cortex slices, this concentration had no effect on NMDA-evoked depolarization, but had a moderate effect on kainate and gave a total blockade of AMPA depolarizations. It is concluded that antagonists of non-NMDA glutamate receptor subtypes, possibly AMPA, may be a useful therapeutic approach for cerebral ischaemia-related brain damage following global ischaemia. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Female; Gerbillinae; Hippocampus; Ibotenic Acid; Ischemic Attack, Transient; Kinetics; Male; Neurons; Piperidines; Quinoxalines; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1993 |
NBQX does not affect learning and memory tasks in mice: a comparison with D-CPPene and ifenprodil.
The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline (NBQX) did not impair working memory measured as alternation behavior in the Y-maze in mice. No depressant effect on alternation was detected even when NBQX impaired locomotion measured as the total number of arm entries. Similar profile of action in the Y-shaped maze was observed after administration of an anti-ischemic drug ifenprodil. In contrast, the N-methyl-D-aspartate (NMDA) antagonist (D-(E)-4-(3-phosphonoprop-2-enyl)piperazine-2-carboxylate (D-CPPene) impaired spontaneous alternation. In the step-through passive avoidance task, mice were trained to avoid dark compartment entry. NBQX and ifenprodil did not impair learning in this task when administered before or immediately after training. In contrast, D-CPPene disturbed acquisition when administered before but not immediately after training or before retention test. These observations suggest that AMPA receptors are not critically involved in the formation of spatial working memory and acquisition (storage) in the passive avoidance, and have no effect on recall (retrieval) from long-term memory. Topics: Animals; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Male; Maze Learning; Memory; Mice; Neuropsychological Tests; Piperazines; Piperidines; Quinoxalines; Reaction Time | 1992 |