2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with homocysteic-acid* in 3 studies
3 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and homocysteic-acid
Article | Year |
---|---|
Do stereoisomers of homocysteic acid exhibit different convulsant action in immature rats?
Mechanism of ictogenesis of D- and L-stereroisomers of homocysteic acid was studied in 12-day-old rats by means of antagonists of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. There was no qualitative difference between the two stereoisomers in generation of emprosthotonic (flexion) as well as generalized tonic-clonic seizures. Moderate differences were observed in the first, nonconvulsive effects of the two isomers. As generation of the two types of seizures is concerned, NMDA and AMPA participate in generalized tonic-clonic seizures whereas NMDA receptors play a dominant role in generation of flexion seizures. Topics: 2-Amino-5-phosphonovalerate; Animals; Benzodiazepines; Dizocilpine Maleate; Homocysteine; Male; Quinoxalines; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Seizures; Stereoisomerism | 2019 |
Behavioral and metabolic changes in immature rats during seizures induced by homocysteic acid: the protective effect of NMDA and non-NMDA receptor antagonists.
Bilateral intracerebroventricular infusion of dl-homocysteic acid (DL-HCA) (600 nmol on each side) to immature 12-day-old rats induced generalized clonic-tonic seizures, recurring frequently for at least 90 min, with a high rate of survival. Electrographic recordings from sensorimotor cortex, hippocampus, and striatum demonstrated isolated spikes in the hippocampus and/or striatum as the first sign of dl-HCA action. Generalization of epileptic activity occurred during generalized clonic-tonic seizures, but electroclinical correlation was very low; dissociation between EEG pattern and motor phenomena was common. Seizures were accompanied by large decreases of cortical glucose and glycogen and by approximately 7- to 10-fold accumulation of lactate. ATP and phosphocreatine (PCr) levels remained unchanged even during longlasting (3 h) convulsions. Metabolite levels became normalized during the recovery period (24 h). The examination of the effect of selected antagonists of NMDA [AP7 (18.5 and 37 mg/kg, respectively), MK-801 (0.5 mg/kg)] and non-NMDA [NBQX (10, 15 and 30 mg/kg, respectively)] receptors revealed that seizures could be attenuated or prevented (depending on the dose employed) by antagonists of both NMDA and non-NMDA receptors, as evaluated not only according to the suppression of behavioral manifestations of seizures, but also in terms of the protection of metabolite changes accompanying seizures. All antagonists employed, when given alone in the same doses as those used for seizure protection, did not influence metabolite levels, with the exception of increased glucose concentrations. Furthermore, the pronounced anticonvulsant effect could be achieved by the combined treatment with low subthreshold doses of NMDA (AP7) and non-NMDA (NBQX) receptor antagonists, which may be of potential significance for a new approach to the treatment of epilepsy. Topics: 2-Amino-5-phosphonovalerate; Age Factors; Animals; Cerebral Cortex; Disease Models, Animal; Dizocilpine Maleate; Electroencephalography; Energy Metabolism; Epilepsy; Excitatory Amino Acid Antagonists; Glucose; Homocysteine; Injections, Intraventricular; Male; Neuroprotective Agents; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Seizures | 2000 |
Characterization of L-homocysteate-induced currents in Purkinje cells from wild-type and NMDA receptor knockout mice.
L-Homocysteic acid (HCA), an endogenous excitatory amino acid in the mammalian CNS, potently activates N-methyl-D-aspartate (NMDA) receptors in hippocampal neurons. However, the responses to HCA in Purkinje cells, which lack functional NMDA receptors, have been largely unexplored: HCA may activate conventional non-NMDA receptors by its mixed agonistic action on both NMDA and non-NMDA receptors, or it may activate a novel non-NMDA receptor that has high affinity for HCA. To test these possibilities, we compared the responses to HCA in cultured Purkinje cells with those in hippocampal neurons by using the whole cell patch-clamp technique. To clearly isolate HCA responses mediated by non-NMDA receptors, we complemented pharmacological methods by using neurons from mutant mice (NR(-/-)) that lack functional NMDA receptors. A moderate dose of HCA (100 microM) induced substantial responses in Purkinje cells. These responses were blocked by non-NMDA receptor antagonists but were insensitive to NMDA receptor antagonists. HCA also activated responses mediated by non-NMDA receptors in both wild-type and NR1(-/-) hippocampal neurons. HCA responses in Purkinje cells had a pharmacological profile (EC(50) and Hill coefficient) very similar to that of non-NMDA receptor components of HCA responses in hippocampal neurons. Moreover, the amplitude of the non-NMDA receptor component of HCA responses was directly correlated with that of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)- and kainate-induced responses in both types of neurons. Finally, in both types of neurons, HCA currents mediated by non-NMDA receptors were potently blocked by the AMPA receptor antagonist GYKI52466. These findings indicate that HCA-activated AMPA receptors in Purkinje cells are similar to those in hippocampal neurons and that there is no distinct HCA-preferring receptor in Purkinje cells. We also found that in hippocampal neurons, the EC(50)s of HCA for non-NMDA receptors and for NMDA receptors were more similar than originally reported; this finding indicates that HCA is similar to other mixed agonists, such as glutamate. HCA responses may appear to be selective at NMDA receptors in cells that express these receptors, such as hippocampal neurons; in cells that express few functional NMDA receptors, such as Purkinje cells, HCA may appear to be selective at non-NMDA receptors. Topics: Animals; Cells, Cultured; Excitatory Amino Acid Antagonists; Hippocampus; Homocysteine; Mice; Mice, Knockout; N-Methylaspartate; Neurons; Purkinje Cells; Quinoxalines; Receptors, N-Methyl-D-Aspartate | 1999 |