2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid* in 3 studies
3 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 6-hydroxy-2-5-7-8-tetramethylchroman-2-carboxylic-acid
Article | Year |
---|---|
5-fluorouracil-induced oligodendrocyte death and inhibitory effect of cycloheximide, Trolox, and Z-VAD-FMK in murine cortical culture.
5-fluorouracil (5-FU) is a widely used anticancer drug. One of the adverse effects of this drug is selective cerebral white matter injury, but to the authors' knowledge its mechanism has not been well documented. The current study was performed to investigate the mechanism of cerebral white matter injury caused by 5-FU and to develop the intervention to attenuate its injury in vitro.. Mixed oligodendrocyte/astrocyte cells were dissociated from specimens taken from approximately 2-day-old postnatal mouse cortex and cultured for 3-4 weeks. The culture cells were exposed to 5-FU, cycloheximide, emetine, Z-VAD-fmk, 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(F)-quinoxaline (NBQX), Trolox, and epigallocatechin gallate. Oligodendrocyte cell death was assessed by counting the number of viable galactocerebroside-positive cells per x 100 field.. Mixed oligodendrocyte/astrocyte culture cells that were exposed to 5-FU (at doses of 10 microM, 30 microM, and 100 microM) for 24 hours ensued concentration-dependent oligodendrocyte death. The majority of oligodendrocytes, but few astrocytes, were injured by 100 microM 5-FU. Trolox, a vitamin E analog antioxidant, as well as cycloheximide (a protein synthesis inhibitor) and Z-VAD-fmk (a caspase inhibitor), significantly attenuated the 5-FU-induced oligodendrocyte death. However, NBQX, an alpha-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropionic acid (AMPA) receptor antagonist, did not appear to effect the 5-FU-induced oligodendrocyte death.. The findings of the current study suggested that 5-FU led to oligodendrocyte death rather than astrocyte death by way of the apoptotic process, whereas antioxidants may prevent the 5-FU-induced oligodendrocyte cell death in vitro. Topics: Amino Acid Chloromethyl Ketones; Animals; Antimetabolites, Antineoplastic; Antioxidants; Caspase Inhibitors; Cell Culture Techniques; Cell Death; Chromans; Cycloheximide; Cysteine Proteinase Inhibitors; Excitatory Amino Acid Antagonists; Fluorouracil; Mice; Oligodendroglia; Protein Synthesis Inhibitors; Quinoxalines; Receptors, AMPA | 2004 |
Characterization of iodoacetate-mediated neurotoxicity in vitro using primary cultures of rat cerebellar granule cells.
The neuroprotective efficacy of antioxidant molecules against iodoacetate (IAA) neurotoxicity in rat cerebellar granule cell (CGC) cultures was investigated. Transient exposure to IAA caused a concentration-dependent decrease in cell viability (ED50 = 9.8 microM). Dizocilpine maleate (MK-801), and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxobenzo[f]quinoxaline-7-sulfonamide (NBQX), failed to prevent IAA toxicity. Certain antioxidant molecules were shown to be neuroprotective against IAA when combined with MK-801 but were ineffective when administered alone. (S)-(-)-Trolox, butylated hydroxytoluene (BHT), and U-83836E exhibited EC50 values of 78, 5.9, and 0.25 microM, respectively, in the presence of 10 microM MK-801. IAA also induced an increase in intracellular oxidative stress, which was quenched by the antioxidants (in the presence of MK-801) in cultures loaded with the oxidant sensitive dye 2'7'-dichlorodihydrofluorescein diacetate (DCFH-DA). Topics: Animals; Antioxidants; Butylated Hydroxytoluene; Cells, Cultured; Cerebellar Cortex; Chromans; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Synergism; Fluoresceins; Fluorescent Dyes; Iodoacetates; Neuroprotective Agents; Neurotoxins; Oxidative Stress; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate | 2000 |
Optical imaging reveals elevated intracellular chloride in hippocampal pyramidal neurons after oxidative stress.
The accumulation of reactive oxygen species (ROS) in the brain is associated with several neurodegenerative conditions. ROS can affect ionic homeostasis leading to impaired neurotransmission. Here, we determined the ability of H(2)O(2), a membrane permeant ROS, to alter intraneuronal Cl(-), an important regulator of neuronal excitability. Real-time alterations in intracellular chloride, [Cl(-)]i, were measured with UV laser scanning confocal microscopy in hippocampal slices loaded with the cell-permeant form of 6-methoxy-N-ethylquinolium iodide (MEQ), a Cl(-)-sensitive fluorescent probe. In slices superfused with H(2)O(2) for 10 min, there was a significant decrease in MEQ fluorescence (elevation in [Cl(-)]i) in area CA1 pyramidal cell soma but not in interneurons located in stratum radiatum. Alterations in [Cl(-)]i induced by H(2)O(2) were prevented by the iron chelator deferoxamine and the vitamin E analog Trolox, suggesting the involvement of free radicals. The influx of Cl(-) probably occurred through the GABA-gated Cl(-) channel because the effects of H(2)O(2) were blocked by picrotoxin. In addition, HPLC analysis of the superfusates indicated that GABA and glutamate accumulated extracellularly after H(2)O(2) exposure. Excitatory amino acid receptor antagonists 2-amino-5-phoshopentanoic acid and 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide also attenuated the effect of H(2)O(2) on MEQ fluorescence. The changes in [Cl(-)]i induced by H(2)O(2) were Ca(2+)-dependent and Na(+)-independent. After exposure of slices to H(2)O(2), the ability of the GABA agonist muscimol to increase [Cl(-)]i was attenuated. Thus, ROS, like H(2)O(2), may impair transmembrane Cl(-) gradients and reduce inhibitory neurotransmission, further promoting neuronal damage in oxidative stress-related disease and in aging. Topics: 2-Amino-5-phosphonovalerate; Animals; Antioxidants; Cell Membrane Permeability; Chlorides; Chromans; Deferoxamine; Extracellular Space; Fluorescent Dyes; GABA Antagonists; gamma-Aminobutyric Acid; Glutamic Acid; Hippocampus; Hydrogen Peroxide; In Vitro Techniques; Kinetics; Microscopy, Confocal; Muscimol; Nipecotic Acids; Oxidative Stress; Pyramidal Cells; Quinolinium Compounds; Quinoxalines; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Tiagabine | 1999 |