2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 4-methylglutamic-acid

2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with 4-methylglutamic-acid* in 4 studies

Other Studies

4 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 4-methylglutamic-acid

ArticleYear
Acute and late effects on induction of allodynia by acromelic acid, a mushroom poison related structurally to kainic acid.
    British journal of pharmacology, 2004, Volume: 142, Issue:4

    1. Ingestion of a poisonous mushroom Clitocybe acromelalga is known to cause severe tactile pain (allodynia) in the extremities for a month and acromelic acid (ACRO), a kainate analogue isolated from the mushroom, produces selective damage of interneurons of the rat lower spinal cord when injected either systemically or intrathecally. Since ACRO has two isomers, ACRO-A and ACRO-B, here we examined their acute and late effects on induction of allodynia. 2. Intrathecal administration of ACRO-A and ACRO-B provoked marked allodynia by the first stimulus 5 min after injection, which lasted over the 50-min experimental period. Dose-dependency of the acute effect of ACRO-A on induction of allodynia showed a bell-shaped pattern from 50 ag x kg(-1) to 0.5 pg x kg(-1) and the maximum effect was observed at 50 fg x kg(-1). On the other hand, ACRO-B induced allodynia in a dose-dependent manner from 50 pg x kg(-1) to 50 ng x kg(-1). 3. N-methyl-d-aspartate (NMDA) receptor antagonists and Joro spider toxin, a Ca(2+)-permeable AMPA receptor antagonist, inhibited the allodynia induced by ACRO-A, but not by ACRO-B. However, other AMPA/kainate antagonists did not affect the allodynia induced by ACRO. 4. Whereas no neuronal damage was observed in the spinal cord in ACRO-A-treated mice, induction of allodynia by ACRO-A (50 fg x kg(-1)) and ACRO-B (50 ng x kg(-1)) was selectively lost 1 week after i.t. injection of a sublethal dose of ACRO-A (50 ng x kg(-1)) or ACRO-B (250 ng x kg(-1)). Higher doses of ACRO-A, however, could evoke allodynia dose-dependently from 50 pg x kg(-1) to 500 ng x kg(-1) in the ACRO-A-treated mice. The allodynia induced by ACRO-A (500 ng x kg(-1)) was not inhibited by Joro spider toxin or NMDA receptor antagonists. These properties of the late allodynia induced by ACRO-A were quite similar to those of the acute allodynia induced by ACRO-B. 5. ACRO-A could increase [Ca(2+)](i) in the deeper laminae, rather than in the superficial laminae, of the spinal cord. This increase was not blocked by the AMPA-preferring antagonist GYKI52466 and Joro spider toxin. 6. Taken together, these results demonstrate the stereospecificity of ACRO for the induction of allodynia and suggest the presence of a receptor specific to ACRO.

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Basidiomycota; Benzodiazepines; Dizocilpine Maleate; Dose-Response Relationship, Drug; Drug Evaluation, Preclinical; Glutamates; Heterocyclic Compounds; Indoles; Injections, Spinal; Japan; Kainic Acid; Lumbosacral Region; Male; Mice; Mice, Inbred Strains; Mushroom Poisoning; Oximes; Pain; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Spider Venoms; Spinal Cord; Stereoisomerism; Structure-Activity Relationship; Time Factors

2004
Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice.
    Brain research. Molecular brain research, 2004, Sep-28, Volume: 128, Issue:2

    The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs.

    Topics: Amino Acid Transport System X-AG; Animals; Animals, Newborn; Astrocytes; Blotting, Western; Brain; Cells, Cultured; Electric Stimulation; Embryo, Mammalian; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Postsynaptic Potentials; Glutamates; Glutamic Acid; Immunohistochemistry; In Situ Nick-End Labeling; In Vitro Techniques; Mice; Mice, Knockout; Patch-Clamp Techniques; Piperazines; Purkinje Cells; Quinoxalines; RNA; Stem Cells; Synaptic Transmission; Time Factors

2004
Pharmacological characterization of a GluR6 kainate receptor in cultured hippocampal neurons.
    European journal of pharmacology, 1999, Aug-13, Volume: 378, Issue:3

    We have examined the pharmacology of kainate receptors in cultured hippocampal neurons (6-8 days in vitro (DIV)) from embryonic rats (E17). Cultured neurons were pre-treated with concanavalin A to remove kainate receptor desensitization and whole-cell voltage clamp electrophysiology employed to record inward currents in response to glutamatergic agonists and antagonists. N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor responses were blocked using MK801 (3 microM) and the 2,3-benzodiazepine, LY300168 (GYKI53655, 50 microM), respectively. Inward currents were recorded in hippocampal neurons upon application of kainate and the 2S,4R isomer of 4-methyl glutamic acid (SYM2081) with EC50 values of 3.4 +/- 0.4 microM and 1.6 +/- 0.5 microM, respectively (n = 6 cells). The GluR5 selective agonists, LY339434 (100 microM) and (RS)-2-amino-3-(3-hydroxy-5-tert-butyl-4-isoxazolyl) propionic acid (ATPA) (100 microM), did not evoke detectable inward currents in any cell responding to kainate. LY293558 and the selective GluR5 antagonist, LY382884, had weak antagonist effects on responses evoked by either kainate or (2S,4R)-4-methyl glutamate (IC50 > 300 microM). The quinoxalinedione, 2,3-dihyro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline (NBQX), blocked both kainate and (2S,4R)-4-methyl glutamate-activated currents at much lower concentrations (IC50 approximately 10 microM). These results provide pharmacological evidence that ion channels comprised of GluR6 kainate receptor subunits mediate kainate receptor responses in hippocampal neurons cultured 6-8 DIV.

    Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Binding, Competitive; Cell Line; Dose-Response Relationship, Drug; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Gene Expression; GluK2 Kainate Receptor; Glutamates; Hippocampus; Humans; Isoquinolines; Kainic Acid; Membrane Potentials; Neurons; Patch-Clamp Techniques; Quinoxalines; Radioligand Assay; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Fusion Proteins; Tetrazoles

1999
Cytotoxic effects of kainate ligands on HEK cell lines expressing recombinant kainate receptors.
    Brain research, 1996, May-13, Volume: 720, Issue:1-2

    Exposure of neurons either for prolonged periods of time or to high concentrations of excitatory amino acids (EAA), such as glutamate, results in neuronal death. Kainate also causes cell toxicity through the glutamate receptors. However, it is unclear whether the kainate receptor itself mediates any of the toxic responses. In the present study, HEK cells expressing the GluR6 +/- KA2 receptor subunit(s) were studied for their susceptibility to toxicity through the kainate receptor by kainate ligands. The natural ligand, glutamate, did not result in toxicity to the recombinant cell lines over that observed with the untransfected HEK cells, whereas kainate produced a 2-3-fold increase in LDH in both the HEK/GluR6 (ANOVA, P = 0.0001) and HEK/GluR6 + KA2 (ANOVA, P = 0.0002) cell lines following treatment with various dosages, but did not affect the HEK cells. Similar 2-3-fold increases in LDH activity were detected in both recombinant cell lines following treatment with 100 nM of SYM2081 ((2S,4R)-4-methylglutamic acid), a dose at which agonistic activity is elicited. The rank order potencies for eliciting toxicity are consistent with the previously reported EC50 values (SYM2081 > kainate > > > glutamate). Surprisingly, the kainate antagonist, NBQX, was the most toxic of the compounds tested although it had an affinity for the kainate receptor similar to glutamate. Treatment with as little as 10 nM elicited a dramatic increase in toxicity (6-10-fold) in the recombinant cell lines. At 1 microM, NBQX was significantly more toxic (Fisher PLSD, P < 0.05) than any of the other compounds tested. Thus, it appears that cell toxicity can be mediated via kainate receptor through two independent mechanisms: activation and blockage of the kainate receptor.

    Topics: Cell Line; Cell Survival; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Glutamates; Glutamic Acid; Humans; Kainic Acid; L-Lactate Dehydrogenase; Ligands; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Recombinant Proteins

1996