2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 3-nitrotyrosine

2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with 3-nitrotyrosine* in 2 studies

Other Studies

2 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 3-nitrotyrosine

ArticleYear
Nitric oxide inhibits complex I following AMPA receptor activation via peroxynitrite.
    Neuroreport, 2004, Sep-15, Volume: 15, Issue:13

    We investigated the role of nitric oxide (NO) on mitochondrial complexes activity, following short-term non-desensitizing activation of AMPA receptors with kainate (KA) plus cyclothiazide (CTZ), in cultured rat hippocampal neurons. In these conditions, we observed a decrease in the activity of mitochondrial complexes I, II/III, and IV. A selective neuronal nitric oxide synthase inhibitor, 7-Nitroindazole, prevented the decrease in the activity of mitochondrial complex I, but not for the other complexes. Exposure to KA plus CTZ also increased cyclic GMP levels significantly, and led to increased levels of 3-nitrotyrosine, a biomarker for peroxynitrite production. Taken together, our results suggest that non-desensitizing activation of AMPA receptors causes inhibition of mitochondrial complex I via peroxynitrite.

    Topics: Analysis of Variance; Animals; Antihypertensive Agents; Benzothiadiazines; Cells, Cultured; Cyclic GMP; Drug Interactions; Embryo, Mammalian; Enzyme Inhibitors; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Hippocampus; Immunohistochemistry; Kainic Acid; Microtubule-Associated Proteins; Neurons; NG-Nitroarginine Methyl Ester; Nitric Oxide; Peroxynitrous Acid; Proton Pumps; Quinoxalines; Rats; Receptors, AMPA; Tyrosine

2004
Involvement of enhanced sensitivity of N-methyl-D-aspartate receptors in vulnerability of developing cortical neurons to methylmercury neurotoxicity.
    Brain research, 2001, May-18, Volume: 901, Issue:1-2

    The developing cortical neurons have been well documented to be extremely vulnerable to the toxic effect of methylmercury (MeHg). In the present study, a possible involvement of N-methyl-D-aspartate (NMDA) receptors in MeHg neurotoxicity was examined because the sensitivity of cortical neurons to NMDA neurotoxicity has a similar developmental profile. Rats on postnatal day 2 (P2), P16, and P60 were orally administered MeHg (10 mg/kg) for 7 consecutive days. The most severe neuronal damage was observed in the occipital cortex of P16 rats. When MK-801 (0.1 mg/kg), a non-competitive antagonist of NMDA, was administered intraperitoneally with MeHg, MeHg-induced neurodegeneration was markedly ameliorated. Furthermore, there was a marked accumulation of nitrotyrosine, a reaction product of peroxynitrite and L-tyrosine, after chronic treatment of MeHg in the occipital cortex of P16 rats. The accumulation of nitrotyrosine was also significantly suppressed by MK-801. In the present electrophysiological study, the amplitude of synaptic responses mediated by NMDA receptors recorded in cortical neurons of P16 rats was significantly larger than those from P2 and P60 rats. These observations strongly suggest that a generation of peroxynitrite through activation of NMDA receptors is a major causal factor for MeHg neurotoxicity in the developing cortical neurons. Furthermore, enhanced sensitivity of NMDA receptors may make the cortical neurons of P16 rats most susceptible to MeHg neurotoxicity.

    Topics: Age Factors; Animals; Animals, Newborn; Antigens, CD; Antigens, Neoplasm; Antigens, Surface; Avian Proteins; Basigin; Blood Proteins; Cerebral Cortex; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Membrane Glycoproteins; Mercury Poisoning, Nervous System; Methylmercury Compounds; Nerve Degeneration; Neurons; Nitrates; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Tyrosine

2001