2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 3-bromo-7-nitroindazole

2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with 3-bromo-7-nitroindazole* in 2 studies

Other Studies

2 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 3-bromo-7-nitroindazole

ArticleYear
Paradoxical facilitation of pentylenetetrazole-induced convulsion susceptibility in mice lacking neuronal nitric oxide synthase.
    Neuroscience, 2009, Mar-17, Volume: 159, Issue:2

    The major aim of this study was to elucidate the relationship between nitric oxide (NO) and generalized epilepsy. Mice lacking the neuronal nitric oxide synthase (nNOS) gene (nNOS(-/-)) were used in this study to determine the relationship between nNOS alpha and NO in pentylentetrazole (PTZ)-induced convulsions. nNOS(-/-) mice exhibited severe convulsions following injection with a subconvulsive dose of PTZ (40 mg/kg i.p.) and convulsive doses were lethal in all of the mice (60 mg/kg i.p.) following tonic convulsions. The results were confirmed by using selective nNOS inhibitors in wild-type (nNOS(+/+)) mice. The higher doses of the nNOS inhibitors 1-[2-(trifluoromethyl)phenyl] imidazole (TRIM) and 3-bromo-7-nitroindazole (3Br7NI) inhibited clonic-tonic convulsions induced by a convulsive dose of PTZ (60 mg/kg) in nNOS(+/+) mice. In contrast, either TRIM or 3Br7NI at lower doses enhanced convulsions following injection with a subconvulsive dose of PTZ (40 mg/kg) in nNOS(+/+) mice similar to nNOS(-/-) mice treated with PTZ. Such a proconvulsant effect was observed in nNOS(+/+) mice pretreated with nNOS inhibitors but not other NOS inhibitors. These results indicate that NO may be regarded as an anticonvulsant or a proconvulsant substance in relation to convulsions induced by PTZ in mice. Pretreatment with N-methyl-d-aspartate (NMDA) receptor antagonists (5S,10R)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine maleate (MK-801), (E)-(+/-)-2-amino-4-methyl-5-phospho no-3-pentenoic acid ethyl ester, CGP39551) and DL-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide, NBQX) inhibited a subconvulsive dose of PTZ-induced convulsions in nNOS(-/-) mice, demonstrating that convulsions induced by PTZ are modulated by endogenous NO production and ionotropic glutamate receptor-mediated stimulation. These results suggest a negative or positive modulation of neuronal interactions by basal or enhanced NO production, respectively.

    Topics: Animals; Convulsants; Disease Models, Animal; Dizocilpine Maleate; Dose-Response Relationship, Drug; Gene Expression Regulation; Imidazoles; Indazoles; Mice; Mice, Inbred C57BL; Mice, Knockout; N-Methylaspartate; Neuroprotective Agents; Nitric Oxide; Nitric Oxide Synthase Type I; Pentylenetetrazole; Quinoxalines; Seizures

2009
An AMPA glutamatergic receptor activation-nitric oxide synthesis step signals transsynaptic apoptosis in limbic cortex.
    Neuropharmacology, 2006, Volume: 51, Issue:1

    We have previously shown that pyramidal neurons engaged in cortico-cortical connectivity in limbic cortex are vulnerable to denervation lesions, i.e. relay pyramidal neurons in layer II of piriform cortex undergo transsynaptic apoptosis after lesions interrupting their inputs from the olfactory bulb (bulbotomies). At least one trigger of this transsynaptic degenerative phenomenon is the activation of inhibitory interneurons in layer I, which are induced to upregulate neuronal nitric oxide synthase (nNOS) and release NO. Thus, we have demonstrated that cortical interneurons play an essential role in transducing injury to apoptotic signaling that selectively targets pyramidal neurons. In the present study, we confirm the role of nNOS with pharmacological inhibition of a significant approximately 30% of transsynaptic apoptosis with the selective nNOS inhibitor BRNI at optimal doses. Outcomes were studied both at the histological and molecular level using DNA blots. We also show that the first-generation competitive non-NMDA (AMPA) antagonist NBQX ameliorates transsynaptic apoptosis by the same margin of difference as BRNI and it also reduces nNOS activation as indicated by a significant decrease in NADPH diaphorase histochemical activity in layer I of piriform cortex. Our findings confirm the role of nNOS activation/NO release in transsynaptic apoptosis and show that glutamatergic agonism at AMPA sites also plays a significant role. In addition, our data suggest that AMPA agonism may occur upstream to nNOS upregulation in inhibitory interneurons of layer I. In concert, our findings indicate that transsynaptic neuronal degeneration in limbic cortex involves complex AMPA-glutamatergic and nitrinergic signaling events. An AMPA-mediated upregulation of nNOS and release of NO by inhibitory interneurons may play a prominent role in this type of injury.

    Topics: Animals; Apoptosis; Cell Count; Cerebral Cortex; DNA Fragmentation; Fluorescent Antibody Technique; Immunohistochemistry; Indazoles; Interneurons; Limbic System; Male; Neurons, Afferent; Nitric Oxide; Nitric Oxide Synthase Type I; Olfactory Bulb; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Signal Transduction; Synapses

2006