2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline has been researched along with 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic-acid* in 57 studies
57 other study(ies) available for 2-3-dioxo-6-nitro-7-sulfamoylbenzo(f)quinoxaline and 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic-acid
Article | Year |
---|---|
Interneurons spark seizure-like activity in the entorhinal cortex.
Excessive neuronal synchronization is presumably involved in epileptiform synchronization. However, the respective roles played by interneurons (GABAergic) and principal (glutamatergic) cells during interictal and ictal discharges remain unclear. Here, we employed tetrode wire recordings to establish the involvement of these two cell types in 4-aminopyridine-induced interictal- and low-voltage fast (LVF) onset ictal-like discharges in the rat entorhinal cortex in an in vitro slice preparation. We recorded a total of 90 single units (69 putative interneurons, 17 putative principal and 4 unclassified cells) from 36 slices, and found that: (i) interneurons (66.7%) were more likely to fire during interictal discharges than principal cells (35.3%); (ii) interneuron activity increased shortly before LVF ictal onset, whereas principal cell activity did not change; (iii) interneurons and principal cells fired at high rates throughout the tonic phase of the ictal discharge; however, (iv) only interneurons showed phase-locked relationship with LVF activity at 5-15Hz during the tonic phase. Finally, the association of interneuron firing with interictal discharges was maintained during blockade of ionotropic glutamatergic transmission. Our findings demonstrate the prominent involvement of interneurons in interictal discharge generation and in the transition to LVF ictal activity in this in vitro model of epileptiform synchronization. Topics: 4-Aminopyridine; Action Potentials; Animals; Disease Models, Animal; Entorhinal Cortex; Excitatory Amino Acid Antagonists; Glutamic Acid; Interneurons; Male; Piperazines; Quinoxalines; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Seizures; Tissue Culture Techniques | 2016 |
Dual-channel circuit mapping reveals sensorimotor convergence in the primary motor cortex.
Cortical cells integrate synaptic input from multiple sources, but how these different inputs are distributed across individual neurons is largely unknown. Differences in input might account for diverse responses in neighboring neurons during behavior. We present a strategy for comparing the strengths of multiple types of input onto the same neuron. We developed methods for independent dual-channel photostimulation of synaptic inputs using ChR2 together with ReaChR, a red-shifted channelrhodopsin. We used dual-channel photostimulation to probe convergence of sensory information in the mouse primary motor cortex. Input from somatosensory cortex and thalamus converges in individual neurons. Similarly, inputs from distinct somatotopic regions of the somatosensory cortex are integrated at the level of single motor cortex neurons. We next developed a ReaChR transgenic mouse under the control of both Flp- and Cre-recombinases that is an effective tool for circuit mapping. Our approach to dual-channel photostimulation enables quantitative comparison of the strengths of multiple pathways across all length scales of the brain. Topics: Animals; Animals, Newborn; Brain Mapping; Channelrhodopsins; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; In Vitro Techniques; Light; Luminescent Proteins; Male; Mice; Motor Cortex; Nerve Net; Neurons; Piperazines; Quinoxalines; Sodium Channel Blockers; Somatosensory Cortex; Tetrodotoxin; Transduction, Genetic | 2015 |
Bidirectional modulatory effect of 17β-estradiol on NMDA receptors via ERα and ERβ in the dentate gyrus of juvenile male rats.
The neurosteroid 17β-estradiol (E2) is synthesized by aromatase in both male and female hippocampi and is known to modulate hippocampal synaptic functions. However, as some contradictory findings regarding the modulatory effects of E2 have been reported in the literature, its physiological role and mechanism of action in the hippocampus remain controversial. Our recent study showed that a low E2 dose (1 nM) increased the amplitude of NMDA receptor-mediated EPSCs (NMDAR-EPSCs) and lowered the threshold for the induction of NMDA receptor-dependent long-term potentiation (NMDAR-LTP), while a high E2 dose (7 nM) exerted opposite effects in the dentate gyrus of juvenile male rat hippocampal slices. The present study is a follow-up that explores the underlying mechanism of this bidirectional effect of E2. We found that the ERα agonist PPT reproduced the actions of the low E2 dose on NMDAR-EPSCs and NMDAR-LTP, while the ERβ agonist DPN reproduced the actions of the high E2 dose. Moreover, PPT, but not DPN, restored the decrease in NMDAR-EPSCs induced by the aromatase inhibitor letrozole, suggesting that E2 synthesized constitutively in the hippocampus enhances NMDA receptor function via ERα. The PPT-induced enhancement in NMDAR-EPSCs was mediated by Src family kinase, but was not caused by NR2B modulation. These findings demonstrate that E2 exerts condition-dependent bidirectional effects on NMDA receptor-mediated transmission and, thus, synaptic plasticity via ERα and ERβ in the dentate gyrus of juvenile male rats. Topics: Animals; Dentate Gyrus; Dose-Response Relationship, Drug; Estradiol; Estrogen Receptor alpha; Estrogen Receptor beta; Estrogens; Excitatory Postsynaptic Potentials; Female; Ginsenosides; In Vitro Techniques; Male; NAD; Phenols; Piperazines; Piperidines; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Sapogenins | 2013 |
Identification of an inhibitory circuit that regulates cerebellar Golgi cell activity.
Here we provide evidence that revises the inhibitory circuit diagram of the cerebellar cortex. It was previously thought that Golgi cells, interneurons that are the sole source of inhibition onto granule cells, were exclusively coupled via gap junctions. Moreover, Golgi cells were believed to receive GABAergic inhibition from molecular layer interneurons (MLIs). Here we challenge these views by optogenetically activating the cerebellar circuitry to determine the timing and pharmacology of inhibition onto Golgi cells and by performing paired recordings to directly assess synaptic connectivity. In contrast to current thought, we find that Golgi cells, not MLIs, make inhibitory GABAergic synapses onto other Golgi cells. As a result, MLI feedback does not regulate the Golgi cell network, and Golgi cells are inhibited approximately 2 ms before Purkinje cells, following a mossy fiber input. Hence, Golgi cells and Purkinje cells receive unique sources of inhibition and can differentially process shared granule cell inputs. Topics: Animals; Animals, Newborn; Bacterial Proteins; Biophysics; Cerebral Cortex; Channelrhodopsins; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Luminescent Proteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Models, Neurological; Nerve Net; Neural Inhibition; Neurons; Patch-Clamp Techniques; Piperazines; Pyridazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Thy-1 Antigens; Transfection | 2012 |
D1 receptor modulation of action potential firing in a subpopulation of layer 5 pyramidal neurons in the prefrontal cortex.
Dopamine modulation in the prefrontal cortex is important for cognitive processing and disrupted in diverse neuropsychiatric diseases. Activation of D1 receptors is thought to enable working memory by enhancing the firing properties of pyramidal neurons. However, these receptors are only sparsely expressed in the prefrontal cortex, and how they impact individual neurons remains unknown. Here we study D1 receptor modulation of layer 5 pyramidal neurons in acute slices of the mouse prefrontal cortex. Using whole-cell recordings and two-photon microscopy, we show that neurons expressing D1 receptors have unique morphological and physiological properties. We then demonstrate that activation of these receptors selectively enhances the firing of these neurons by signaling via the protein kinase A pathway. This finding of robust D1 receptor modulation in only a subpopulation of neurons has important implications for cognitive function and disease. Topics: Action Potentials; Animals; Animals, Newborn; Biophysics; Dopamine Antagonists; Electric Stimulation; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Female; GABA Antagonists; In Vitro Techniques; Male; Mice; Mice, Transgenic; Microscopy, Confocal; Patch-Clamp Techniques; Piperazines; Plant Lectins; Prefrontal Cortex; Pyramidal Cells; Pyridazines; Quinoxalines; Receptors, Dopamine D1; Signal Transduction | 2012 |
Serotonin activates catecholamine neurons in the solitary tract nucleus by increasing spontaneous glutamate inputs.
Serotonin (5-HT) is a critical neurotransmitter in the control of autonomic functions. 5-HT(3) receptors participate in vagal afferent feedback to decrease food intake and regulate cardiovascular reflexes; however, the phenotype of the solitary tract nucleus (NTS) neurons involved is not known. A(2)/C(2) catecholamine (CA) neurons in the NTS are directly activated by visceral afferents and are important for the control of food intake and cardiovascular function, making them good candidates to respond to and mediate the effects of serotonin at the level of the NTS. This study examines serotonin's effects on NTS-CA neurons using patch-clamp techniques and transgenic mice expressing an enhanced green fluorescent protein driven by the tyrosine hydroxylase (TH) promoter (TH-EGFP) to identify catecholamine neurons. Serotonin increased the frequency of spontaneous glutamate excitatory postsynaptic currents (sEPSCs) in >90% of NTS-TH-EGFP neurons, an effect blocked by the 5-HT(3) receptor antagonist ondansetron and mimicked by the 5-HT(3) receptor agonists SR5227 and mCPBG. In contrast, 5-HT(3) receptor agonists increased sEPSCs on a minority (<30%) of non-TH neurons. 5-HT(3) receptor agonists increased the frequency, but not the amplitude, of mini-EPSCs, suggesting that their actions are presynaptic. 5-HT(3) receptor agonists increased the firing rate of TH-EGFP neurons, an effect dependent on the increased spontaneous glutamate inputs as it was blocked by the ionotropic glutamate antagonist NBQX, but independent of visceral afferent activation. These results demonstrate a cellular mechanism by which serotonin activates NTS-TH neurons and suggest a pathway by which it can increase catecholamine release in target regions to modulate food intake, motivation, stress, and cardiovascular function. Topics: Action Potentials; Animals; Catecholamines; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Glutamic Acid; Male; Mice; Neurons; Patch-Clamp Techniques; Piperazines; Pyrazines; Quinoxalines; Receptors, Presynaptic; Receptors, Serotonin, 5-HT3; Serotonin; Serotonin Receptor Agonists; Solitary Nucleus; Tyrosine 3-Monooxygenase | 2012 |
The 4-aminopyridine in vitro epilepsy model analyzed with a perforated multi-electrode array.
Epileptiform discharges recorded in the 4-aminopyridine (4-AP) in vitro epilepsy model are mediated by glutamatergic and GABAergic signaling. Using a 60-channel perforated multi-electrode array (pMEA) on corticohippocampal slices from 2 to 3 week old mice we recorded interictal- and ictal-like events. When glutamatergic transmission was blocked, interictal-like events no longer initiated in the hilus or CA3/CA1 pyramidal layers but originated from the dentate gyrus granule and molecular layers. Furthermore, frequencies of interictal-like events were reduced and durations were increased in these regions while cortical discharges were completely blocked. Following GABA(A) receptor blockade interictal-like events no longer propagated to the dentate gyrus while their frequency in CA3 increased; in addition, ictal-like cortical events became shorter while increasing in frequency. Lastly, drugs that affect tonic and synaptic GABAergic conductance modulated the frequency, duration, initiation and propagation of interictal-like events. These findings confirm and expand on previous studies indicating that multiple synaptic mechanisms contribute to synchronize neuronal network activity in forebrain structures. This article is part of a Special Issue entitled 'Trends in neuropharmacology: in memory of Erminio Costa'. Topics: 4-Aminopyridine; Animals; Anticonvulsants; Bicuculline; CA3 Region, Hippocampal; Disease Models, Animal; Electrodes; Epilepsy; GABA-A Receptor Antagonists; gamma-Aminobutyric Acid; Hippocampus; In Vitro Techniques; Isoxazoles; Mice; Mice, Inbred C57BL; Microarray Analysis; Motion Pictures; Piperazines; Potassium Channel Blockers; Quinoxalines; Receptors, N-Methyl-D-Aspartate; Software; Somatosensory Cortex | 2011 |
Presynaptic actions of D2-like receptors in the rat cortico-striato-globus pallidus disynaptic connection in vitro.
The cerebral cortex, the neostriatum (Str), and the external segment of the globus pallidus (GPe) form a cortico-Str-GPe disynaptic connection, which is one of the major connections in the basal ganglia circuitries and a target of dopamine modulation. The aim of this study was to examine the actions of D2-like dopamine receptors (D2LRs) in this connection using rat brain slice preparations. Electrical stimulation of the frontal cortex evoked disynaptic inhibitory postsynaptic currents (IPSCs) in cesium-filled GPe neurons voltage-clamped at 0 mV. The IPSCs evoked by threshold stimulation were small, <10 pA. Bath or local applications of the D2LR agonist quinpirole to Str decreased the amplitude of the cortical stimulation-induced IPSCs. Electrical stimulation of Str evoked monosynaptic IPSCs in GPe neurons. Local application of quinpirole to GPe decreased the Str stimulation-induced IPSCs. Bath application of quinpirole decreased the frequency of large miniature IPSCs (mIPSCs) that were considered to be evoked by local collateral axons of GPe neurons. These results suggested that activation of D2LRs decrease the gain of the cortico-Str-GPe disynaptic connection, with the decrease attributed to activation of D2LRs in Str and GPe, and that both Str-GPe and GPe-GPe GABAergic inhibitions are under the control of presynaptic D2LRs. Topics: Animals; Animals, Newborn; Cerebral Cortex; Dopamine Agonists; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; Globus Pallidus; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Neural Pathways; Patch-Clamp Techniques; Piperazines; Presynaptic Terminals; Quinoxalines; Quinpirole; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, Dopamine D2; Synapses | 2009 |
Context-dependent effects of NMDA receptors on precise timing information at the endbulb of Held in the cochlear nucleus.
Many synapses contain both AMPA receptors (AMPAR) and N-methyl-d-aspartate receptors (NMDAR), but their different roles in synaptic computation are not clear. We address this issue at the auditory nerve fiber synapse (called the endbulb of Held), which is formed on bushy cells of the cochlear nucleus. The endbulb refines and relays precise temporal information to nuclei responsible for sound localization. The endbulb has a number of specializations that aid precise timing, including AMPAR-mediated excitatory postsynaptic currents (EPSCs) with fast kinetics. Voltage-clamp experiments in mouse brain slices revealed that slow NMDAR EPSCs are maintained at mature endbulbs, contributing a peak conductance of around 10% of the AMPAR-mediated EPSC. During repetitive synaptic activity, AMPAR EPSCs depressed and NMDAR EPSCs summated, thereby increasing the relative importance of NMDARs. This could impact temporal precision of bushy cells because of the slow kinetics of NMDARs. We tested this by blocking NMDARs and quantifying bushy cell spike timing in current clamp when single endbulbs were activated. These experiments showed that NMDARs contribute to an increased probability of firing, shorter latency, and reduced jitter. Dynamic-clamp experiments confirmed this effect and showed it was dose-dependent. Bushy cells can receive inputs from multiple endbulbs. When we applied multiple synaptic inputs in dynamic clamp, NMDARs had less impact on spike timing. NMDAR conductances much higher than mature levels could disrupt spiking, which may explain its downregulation during development. Thus mature NMDAR expression can support the conveying of precise temporal information at the endbulb, depending on the stimulus conditions. Topics: Action Potentials; Age Factors; Animals; Animals, Newborn; Biophysical Phenomena; Biophysics; Cochlear Nerve; Cochlear Nucleus; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Membrane Potentials; Mice; Mice, Inbred CBA; Neural Conduction; Neurons; Patch-Clamp Techniques; Piperazines; Probability; Quinoxalines; Reaction Time; Receptors, N-Methyl-D-Aspartate; Synapses; Time Perception | 2009 |
Approach sensitivity in the retina processed by a multifunctional neural circuit.
The detection of approaching objects, such as looming predators, is necessary for survival. Which neurons and circuits mediate this function? We combined genetic labeling of cell types, two-photon microscopy, electrophysiology and theoretical modeling to address this question. We identify an approach-sensitive ganglion cell type in the mouse retina, resolve elements of its afferent neural circuit, and describe how these confer approach sensitivity on the ganglion cell. The circuit's essential building block is a rapid inhibitory pathway: it selectively suppresses responses to non-approaching objects. This rapid inhibitory pathway, which includes AII amacrine cells connected to bipolar cells through electrical synapses, was previously described in the context of night-time vision. In the daytime conditions of our experiments, the same pathway conveys signals in the reverse direction. The dual use of a neural pathway in different physiological conditions illustrates the efficiency with which several functions can be accommodated in a single circuit. Topics: Action Potentials; Animals; Biotin; Computer Simulation; Connexins; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Gap Junction delta-2 Protein; Green Fluorescent Proteins; Luminescent Proteins; Mice; Mice, Transgenic; Models, Neurological; Motion Perception; Nerve Net; Nerve Tissue Proteins; Neural Inhibition; Neurons; Patch-Clamp Techniques; Photic Stimulation; Piperazines; Quinoxalines; Retina; Visual Fields; Visual Pathways | 2009 |
Selective expression of ligand-gated ion channels in L5 pyramidal cell axons.
NMDA receptor (NMDAR)-dependent strengthening of neurotransmitter release has been widely observed, including in layer 5 (L5) pyramidal cells of the visual cortex, and is attributed to the axonal expression of NMDARs. However, we failed to detect NMDAR-mediated depolarizations or Ca(2+) entry in L5 pyramidal cell axons when focally stimulated with NMDAR agonists. This suggests that NMDARs are excluded from the axon. In contrast, local GABA(A) receptor activation alters axonal excitability, indicating that exclusion of ligand-gated ion channels from the axon is not absolute. Because NMDARs are restricted to the dendrite, NMDARs must signal to the axon by an indirect mechanism to alter release. Although subthreshold somatic depolarizations were found to spread electrotonically hundreds of micrometers through the axon, the resulting axonal potential was insufficient to open voltage-sensitive Ca(2+) channels. Therefore, if NMDAR-mediated facilitation of release is cell autonomous, it may depend on voltage signaling but apparently is independent of changes in basal Ca(2+). Alternatively, this facilitation may be even less direct, requiring a cascade of events that are merely triggered by NMDAR activation. Topics: Animals; Animals, Newborn; Axons; Calcium; Calcium Signaling; Cerebral Cortex; Electric Stimulation; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; gamma-Aminobutyric Acid; Glutamates; In Vitro Techniques; Indoles; Ion Channel Gating; Ion Channels; Iontophoresis; Membrane Potentials; N-Methylaspartate; Patch-Clamp Techniques; Piperazines; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley | 2009 |
Dynamics of fast and slow inhibition from cerebellar golgi cells allow flexible control of synaptic integration.
Throughout the brain, multiple interneuron types influence distinct aspects of synaptic processing. Interneuron diversity can thereby promote differential firing from neurons receiving common excitation. In contrast, Golgi cells are the sole interneurons regulating granule cell spiking evoked by mossy fibers, thereby gating inputs to the cerebellar cortex. Here, we examine how this single interneuron class modifies activity in its targets. We find that GABA(A)-mediated transmission at unitary Golgi cell --> granule cell synapses consists of varying contributions of fast synaptic currents and sustained inhibition. Fast IPSCs depress and slow IPSCs gradually build during high-frequency Golgi cell activity. Consequently, fast and slow inhibition differentially influence granule cell spike timing during persistent mossy fiber input. Furthermore, slow inhibition reduces the gain of the mossy fiber --> granule cell input-output curve, while fast inhibition increases the threshold. Thus, a lack of interneuron diversity need not prevent flexible inhibitory control of synaptic processing. Topics: Action Potentials; Animals; Animals, Newborn; Biophysics; Cell Line, Transformed; Cerebellum; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; Humans; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Neural Inhibition; Neurons; Nonlinear Dynamics; Patch-Clamp Techniques; Phosphinic Acids; Photic Stimulation; Piperazines; Propanolamines; Quinoxalines; Rats; Rats, Sprague-Dawley; Rhodopsin; Synapses; Time Factors; Transfection | 2009 |
Different roles for AMPA and NMDA receptors in transmission at the immature retinogeniculate synapse.
The relay of information at the retinogeniculate synapse, the connection between retina and visual thalamus, begins days before eye opening and is thought to play an important role in the maturation of neural circuits in the thalamus and visual cortex. Remarkably, during this period of development, the retinogeniculate synapse is immature, with single retinal ganglion cell inputs evoking an average peak excitatory postsynaptic current (EPSC) of only about 40 pA compared with 800 pA in mature synapses. Yet, at the mature synapse, EPSCs >400 pA are needed to drive relay neuron firing. This raises the question of how small-amplitude EPSCs can drive transmission at the immature retinogeniculate synapse. Here we find that several features of the immature synapse, compared with the mature synapse, contribute to synaptic transmission. First, although the peak amplitude of EPSC is small, the decay time course of both alpha-amino-3-hydroxy-5-methyl-4isoxazolepropionic acid receptor (AMPAR) and N-methyl-d-aspartate receptor (NMDAR) currents is significantly slower. The prolonged time course of NMDAR currents is a result of the presence of both NR2B and NR2C/D subunits. In addition, the extended presence of neurotransmitter released prolongs the synaptic current time course. Second, reduced sensitivity to magnesium block results in significantly greater synaptic charge transfer through NMDAR. Third, AMPAR currents contribute to the spike latency, but not to temporal precision, at the immature synapse. Furthermore, intrinsic excitability is greater. These properties enable immature synapses with predominantly NMDARs and little or no AMPARs to contribute to the relay of information from retina to visual cortex. Topics: Age Factors; Analysis of Variance; Animals; Animals, Newborn; Dose-Response Relationship, Radiation; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Geniculate Bodies; In Vitro Techniques; Magnesium; Mice; Mice, Inbred C57BL; Neurons; Patch-Clamp Techniques; Piperazines; Quinoxalines; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Retina; Synapses; Visual Pathways | 2008 |
Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration.
Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6b(rd1) (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks. Topics: Animals; Behavior, Animal; Disease Models, Animal; Electroporation; Evoked Potentials, Visual; Excitatory Amino Acid Antagonists; Gene Expression Regulation; Light; Luminescent Proteins; Mice; Mice, Inbred C57BL; Mice, Transgenic; Motor Activity; Patch-Clamp Techniques; Photic Stimulation; Piperazines; Quinoxalines; Retinal Bipolar Cells; Retinal Degeneration; Retinal Ganglion Cells; Rhodopsin; Time Factors; Vision, Ocular; Visual Pathways | 2008 |
Contribution of NMDA and AMPA receptors to temporal patterning of auditory responses in the inferior colliculus.
Although NMDA receptors (NMDARs) are associated with synaptic plasticity, they form an essential part of responses to sensory stimuli. We compared contributions of glutamatergic NMDARs and AMPA receptors (AMPARs) to auditory responses in the inferior colliculus (IC) of awake, adult mustached bats. We examined the magnitude and temporal pattern of responses to tonal signals in single units before, during, and after local micro-iontophoretic application of selective antagonists to AMPARs [NBQX (1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide)] and NMDARs [CPP ((+/-)3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid)]. Combined blockade of AMPARs and NMDARs eliminated excitatory responses in nearly all neurons, whereas separate blockade of each receptor was quantitatively similar, causing substantial (> 50%) spike reductions in approximately 75% of units. The major result was that effects of receptor blockade were most closely related to the first-spike latency of a unit. Thus, AMPAR blockade substantially reduced spikes in all short-latency units (< 12 ms) but never in long-latency units (> or = 12 ms). NMDAR blockade had variable effects on short-latency units but reduced spikes substantially for all long-latency units. There were no distinct contributions of AMPARs and NMDARs to early and late elements of responses. Thus, AMPAR blockade reduced early (onset) spikes somewhat more effectively than NMDAR blockade in short-latency units, but NMDAR blockade reduced onset spikes more effectively in long-latency units. AMPAR and NMDAR blockade were equally effective in reducing later elements of sustained responses in short-latency units, whereas NMDAR blockade was much more effective in long-latency units. These results indicate that NMDARs play multiple roles for signal processing in adult IC neurons. Topics: Acoustic Stimulation; Action Potentials; Animals; Chiroptera; Excitatory Amino Acid Antagonists; Inferior Colliculi; Neurons; Piperazines; Quinoxalines; Reaction Time; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 2007 |
Slow oscillatory activity of rat globus pallidus neurons in vitro.
The neurons in the external segment of the pallidum in the primate develop a characteristic firing pattern consisting of alternately occurring long, 2-20 s, strongly active phases and long completely silent phases when the subthalamo-pallidal excitatory inputs are blocked. The induction of the activity might be a factor in the development of dyskinesias after the loss of subthalamic output. In this study, we used globus pallidus (GPe) slice preparations obtained from juvenile rats to examined the conditions that support the alternatively occurring long depolarized and hyperpolarized phases which we refer to as the slow oscillation (SO). SO was not induced by the blockade of glutamatergic inputs but was induced by treatments that depolarized dendrites and, at the same time, hyperpolarized the somata with current injections. The treatments included elevation of extracellular K(+), application of K-current blockers and the lowering of extracellular Ca(2+). Application of TTX or intracellular BAPTA injection blocked the SO, while the SO could be maintained in hyperpolarization-activated inward current blockers, organic Ca-current blockers and up to 200 microm CdCl(2). These results suggest that Na currents play a major role in the generation of SO in vitro. It can be speculated that Na currents are involved in the development of active phases observed in the GPe after blockade of the glutamatergic inputs in vivo and that the unique property of GPe neurons in maintaining strong activity after the elimination of the glutamatergic driving force contributes to the development of motor disorders such as dyskinesia. Topics: Action Potentials; Anesthetics, Local; Animals; Animals, Newborn; Biological Clocks; Cadmium Chloride; Calcium; Calcium Channel Blockers; Dose-Response Relationship, Radiation; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; GABA Antagonists; Globus Pallidus; In Vitro Techniques; Neurons; Patch-Clamp Techniques; Piperazines; Pyridazines; Pyrimidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Tetrodotoxin; Time Factors | 2006 |
Presenilin attenuates receptor-mediated signaling and synaptic function.
Presenilin (PS) plays an essential role in intramembranous gamma-secretase processing of amyloid precursor protein (APP) and several membrane-bound proteins. Here we report that selective accumulation of a membrane-tethered deleted in colorectal cancer (DCC) derivative (DCC-alpha) correlates with extensive neurite outgrowth in transfected neuroblastoma cells and axodendritic connectivity associated with increased spine density in cortical neurons derived from PS1(-/-) embryos, as well as wild-type neurons treated with gamma-secretase inhibitors. cAMP-dependent signaling was also increased in both the neuroblastoma and cortical neuron systems. As a physiological consequence of increases in axodendritic connectivity and in the magnitude of cAMP-dependent signaling, short- and long-term glutamatergic synaptic transmission was enhanced in PS-deficient neurons. Together, these results demonstrate for the first time that PS-mediated gamma-secretase activity attenuates receptor-mediated intracellular signaling pathways that are critical in regulating glutamatergic synaptic transmission and memory processes. Topics: Amyloid Precursor Protein Secretases; Animals; Aspartic Acid Endopeptidases; Carbamates; Carbazoles; Cell Adhesion Molecules; Cell Line, Tumor; Cell Membrane; Colforsin; Cyclic AMP; Cyclic AMP-Dependent Protein Kinases; DCC Receptor; Dipeptides; Endopeptidases; Excitatory Postsynaptic Potentials; Genes, DCC; Glutamic Acid; Indoles; Lidocaine; Membrane Proteins; Memory; Mice; Mice, Inbred C57BL; Mice, Knockout; Neurites; Neuroblastoma; Neurons; Piperazines; Presenilin-1; Protein Processing, Post-Translational; Pyrroles; Quinoxalines; Rats; Receptors, Cell Surface; Recombinant Fusion Proteins; Second Messenger Systems; Synaptic Transmission; Transfection; Tumor Suppressor Proteins | 2005 |
Development of behavioral sensitization to the cocaine-like fungicide triadimefon is prevented by AMPA, NMDa, DA D1 but not DA D2 receptor antagonists.
Triadimefon (TDF) is a triazole fungicide that blocks the reuptake of dopamine (DA) and leads to increased locomotor activity levels in mice and rats, effects similar to those of indirect DA agonists such as cocaine. We recently found in mice that intermittent TDF administration led to robust locomotor sensitization, a phenomenon reflecting neuronal plasticity, following challenge with the same TDF dose after a 2-week withdrawal period. The current study sought to determine whether antagonists to DA D1-like receptors (SCH 23390; SCH), DA D2-like receptors (remoxipride; Rem), ionotropic glutamate n-methyl-d-aspartate (NMDA) receptors (CPP), or ionotropic glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (NBQX) could prevent the development of TDF behavioral sensitization, therefore indicating their mechanistic involvement in TDF sensitization. Mice were treated with either vehicle, SCH (0.015 mg/kg), remoxipride (Rem, 0.3 mg/kg), CPP (2.5 mg/kg) or NBQX (10.0 mg/kg), followed 30 min later by vehicle or 75 mg/kg TDF (TDF), twice a week for 7 weeks, with locomotor activity measured post-dosing once a week. After a 2-week withdrawal period, mice were challenged with 75 mg/kg TDF or vehicle, to test for the presence of behavioral sensitization. Pretreatment with SCH, CPP, or NBQX, but not Rem, blocked the development of behavioral sensitization to TDF specifically for vertical activity. Antagonists that blocked TDF vertical sensitization also attenuated the increase in extracellular DA turnover (homovanillic acid [HVA]/DA) normally associated with this behavioral response. Therefore, DA D1, NMDA and AMPA receptors appear to be necessary for the development of behavioral sensitization to TDF. As such, TDF may be considered an environmental risk factor for behavioral dysfunctions linked to glutamatergic and dopaminergic systems. Topics: 3,4-Dihydroxyphenylacetic Acid; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Behavior, Animal; Benzazepines; Brain Chemistry; Corpus Striatum; Drug Administration Schedule; Fungicides, Industrial; Male; Mice; Mice, Inbred C57BL; Motor Activity; N-Methylaspartate; Neuronal Plasticity; Piperazines; Quinoxalines; Receptors, AMPA; Receptors, Dopamine D1; Receptors, N-Methyl-D-Aspartate; Remoxipride; Substance Withdrawal Syndrome; Time Factors; Triazoles | 2004 |
Functional analysis of glutamate transporters in excitatory synaptic transmission of GLAST1 and GLAST1/EAAC1 deficient mice.
The high affinity, Na(+)-dependent, electrogenic glial L-glutamate transporters GLAST1 and GLT1, and two neuronal EAAC1 and EAAT4, regulate the neurotransmitter concentration in excitatory synapses of the central nervous system. We dissected the function of the individual transporters in the monogenic null allelic mouse lines, glast1(-/-) and eaac1(-/-), and the derived double mutant glast(-/-)eaac1(-/-). Unexpectedly, the biochemical analysis and the behavioral phenotypes of these null allelic mouse lines were inconspicuous. Inhibition studies of the Na(+)-dependent glutamate transport by plasma membrane vesicles and by isolated astrocytes of wt and glast1(-/-) mouse brains indicated the pivotal compensatory role of GLT1 in the absence particularly of GLAST1 and GLAST1 and EAAC1 mutant mice. In electrophysiological studies, the decay rate of excitatory postsynaptic currents (EPSCs) of Purkinje cells (PC) after selective activation of parallel and climbing fibers proved to be similar in wt and eaac1(-/-), but was significantly prolonged in glast1(-/-) PCs. Bath application of the glutamate uptake blocker SYM2081 prolonged EPSC decay profiles in both wt and double mutant glast1(-/-)eaac1(-/-) PCs by 286% and 229%, respectively, indicating a prominent role of compensatory glutamate transport in shaping glast1(-/-)eaac1(-/-) EPSCs. Topics: Amino Acid Transport System X-AG; Animals; Animals, Newborn; Astrocytes; Blotting, Western; Brain; Cells, Cultured; Electric Stimulation; Embryo, Mammalian; Excitatory Amino Acid Antagonists; Excitatory Amino Acid Transporter 1; Excitatory Postsynaptic Potentials; Glutamates; Glutamic Acid; Immunohistochemistry; In Situ Nick-End Labeling; In Vitro Techniques; Mice; Mice, Knockout; Patch-Clamp Techniques; Piperazines; Purkinje Cells; Quinoxalines; RNA; Stem Cells; Synaptic Transmission; Time Factors | 2004 |
Participation of AMPA- and NMDA-type excitatory amino acid receptors in the spinal reflex transmission, in rat.
Classical in vitro and in vivo models and electrophysiological techniques were used to investigate the role of AMPA- and NMDA-type glutamate receptors in various components of spinal segmental reflex potentials. In the rat hemisected spinal cord preparation, the AMPA antagonists NBQX and GYKI 52466 abolished the monosynaptic reflex (MSR) potential but caused only partial inhibition of the motoneuronal population EPSP. NMDA antagonists had no noticeable effect on the MSR in normal medium, but markedly depressed the late part of EPSP. However, an NMDA receptor antagonist sensitive monosynaptic response was recorded in magnesium-free medium at complete blockade of the AMPA receptors. In spinalized rats, the AMPA antagonists completely blocked all components of the dorsal root stimulation evoked potential. MK-801 (2mg/kg, i.v.) reduced monosynaptic responses in a frequency dependent way, with no effect at 0.03 Hz and 22% inhibition at 0.25 Hz. The reduction of the di- and polysynaptic reflex components was about 30% and did not depend on stimulation frequency. Long-latency reflex discharge responses, especially when evoked by train stimulation, were more sensitive to MK-801 than the polysynaptic reflex. These results suggest that glutamate activates MSR pathways through AMPA receptors. However, under certain conditions, NMDA receptors can modulate this transmission through plastic changes in the underlying neuronal circuits. AMPA and NMDA receptors play comparable roles in the mediation of longer latency reflex components. Topics: Action Potentials; Animals; Animals, Newborn; Anti-Anxiety Agents; Benzodiazepines; Dizocilpine Maleate; Dose-Response Relationship, Drug; Electric Stimulation; Excitatory Amino Acid Antagonists; In Vitro Techniques; Magnesium; Models, Neurological; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Reflex, Monosynaptic; Spinal Cord; Synapses; Time Factors; Valine | 2003 |
Inhibitory control of intrinsic hippocampal oscillations?
An oscillatory mode of activity is a basic operational mode of the hippocampus. Such activity involves the concurrent expression of several rhythmic processes, of which theta (4-15 Hz) and gamma (20-80 Hz) oscillations are prominent and considered to be important for cognitive processing. In an experimental model that preserves the intrinsic network oscillator, exhibiting the dependency on cholinergic inputs and consequent expression of concurrent theta and gamma oscillations, we investigate the intrinsic mechanisms underlying such integrated hippocampal network responses. This experimental framework is used here to examine the currently prevailing dogma, that interneurons control hippocampal oscillations. The spontaneous response of individual pyramidal cells (in areas CA3 and CA1) and interneurons (area CA3), during oscillatory activity, was monitored intracellularly. Particular attention was given to the initiation of interneuron discharge during oscillations, to the impact of the synaptic output of discharging interneurons on the oscillatory activity, and to the time at which interneurons discharge in relation to the oscillatory cycles. Analysis of the spontaneous patterns of activity in individual interneurons and their outcome, during the oscillatory activity, revealed that interneuron activity is incompatible with initiating, pacing or determining the oscillatory frequencies, although contributing to the apparent rhythmic patterns. Moreover, our results show that non-interneuronal members of the network control interneuron activity. We therefore suggest that the activity of the excitatory cells, i.e., principle cells, is critical toward the initiation, pacing and synchronization of intrinsic hippocampal network oscillations. Topics: Animals; Electrophysiology; Excitatory Amino Acid Antagonists; Hippocampus; In Vitro Techniques; Interneurons; Methacholine Chloride; Nerve Net; Neural Inhibition; Oscillometry; Periodicity; Piperazines; Pyramidal Cells; Quinoxalines; Rats; Reaction Time; Synapses | 2003 |
Expression of heat shock protein 70 induced by 4-aminopyridine through glutamate-mediated excitotoxic stress in rat hippocampus in vivo.
The intrahippocampal administration of 4-aminopyridine (4-AP) induces epileptic seizures and neurodegeneration, due probably to stimulation of glutamate release from synaptic terminals. We have studied the time course of the neurodegenerative changes produced by 4-AP, perfused through microdialysis cannulas in rat hippocampus, and correlated them with the expression of the inducible heat shock protein 70 (HSP70), detected immunocytochemically. Electroencephalographic seizure activity appeared immediately after the beginning of 4-AP perfusion. The first signs of histological neuronal damage were observed in CA1 and CA3 subfields of the perfused hippocampus 3 h after treatment and progressed until reaching a maximal neuronal loss at 24 h. In 4-AP-treated rats HSP70 was expressed mainly in neurons of the contralateral hippocampus, with a time course and cellular distribution very similar to the neurodegeneration observed in the perfused hippocampus, but no neuronal damage was observed. The N-methyl-D-aspartate (NMDA) receptor antagonists MK-801 and (3-phosphonopropyl)-piperazine-2-carboxylic acid prevented the seizures, the neurodegeneration and the expression of HSP70. These data demonstrate that the 4-AP-induced release of endogenous glutamate overactivates NMDA receptors in the perfused hippocampus and that the resulting neuronal hyperexcitability propagates to the contralateral hippocampus, generating a glutamate-mediated neuronal stress sufficient to induce the expression of HSP70 but not to produce neurodegeneration. These findings provide a useful model for investigating the relationships between neuronal hyperexcitation, neurodegeneration and the role of HSP expression. Topics: 4-Aminopyridine; Animals; Anticonvulsants; Cell Count; Chromatography, High Pressure Liquid; Dizocilpine Maleate; Drug Interactions; Electroencephalography; Epilepsy; Extracellular Space; Functional Laterality; Gene Expression; Glutamic Acid; Hippocampus; HSP70 Heat-Shock Proteins; Immunohistochemistry; Male; Microdialysis; Nerve Degeneration; Neuroprotective Agents; Piperazines; Potassium Channel Blockers; Quinoxalines; Rats; Rats, Wistar; Somatosensory Cortex; Stress, Physiological; Time Factors | 2003 |
LTP in cultured hippocampal-entorhinal cortex slices from young adult (P25-30) rats.
Cultured hippocampal neurons and immature organotypic slice cultures overcome temporal limitations of acute hippocampal slices and have been useful for investigating long-lasting plasticity. Difficulties with culturing adult neurons have restricted such studies to preparations from embryonic, perinatal, and juvenile tissue. By improving the methods for culturing and maintaining hippocampal-entorhinal cortex slices obtained from mature rats (P25-30), we show that their use in long-term electrophysiological investigations is feasible. Our cultured slices maintained an intact and functional trisynaptic cascade, normal synaptic function, and reliable long-term recording stability for at least 14 days in vitro. The electrophysiological properties and, in particular, the induction of long-term potentiation (LTP) in our mature organotypic slices were highly sensitive to dissection and tissue culture techniques. We present data describing the extracellular stimulation requirements for LTP-induction and its long-lasting maintenance (>4 h) at the Schaffer-collateral-CA1 synapse, and show that such changes in synaptic efficiency are NMDA receptor dependent. Our hippocampal-entorhinal cortex cultures from mature tissue can retain the electrophysiological properties required for long-term plasticity for several weeks in vitro. Topics: 2-Amino-5-phosphonovalerate; Animals; Cell Survival; Electrophysiology; Entorhinal Cortex; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; GABA Antagonists; Immunoblotting; Immunohistochemistry; Long-Term Potentiation; Nerve Net; Organ Culture Techniques; Picrotoxin; Piperazines; Pyramidal Cells; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA | 2003 |
Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus.
To investigate the role of group III metabotropic glutamate receptors (mGluRs) in the globus pallidus (GP), whole-cell recordings were performed using rat brain slice preparations. Application of the group III mGluRs specific agonist L(+)-2-amino-4-phosphonobutyric acid (L-AP4) suppressed the amplitude of striatal stimulation-induced IPSCs and internal capsule stimulation-induced EPSCs in most of the GP neurons that were capable of generating repetitive firing without spike accommodation. The suppression of IPSCs and EPSCs was accompanied by an increase in the paired-pulse ratio. The L-AP4 effects were antagonized by (R,S)-alpha-cyclopropyl-4-phosphophenylglycine, a blocker for group II/III mGluRs. L-AP4 reduced the frequency of mIPSCs and mEPSCs without changing their amplitude distribution. L-AP4 failed to change iontophoretic glutamate induced responses. These results suggest that the subthalamo-pallidal glutamatergic input might homo- and hetero-synaptically control GABAergic and glutamatergic transmission in the GP. Topics: Animals; Animals, Newborn; Dose-Response Relationship, Drug; Drug Interactions; Electric Stimulation; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; GABA Antagonists; gamma-Aminobutyric Acid; Globus Pallidus; Glutamic Acid; In Vitro Techniques; Internal Capsule; Iontophoresis; Male; Membrane Potentials; Neural Inhibition; Neurons; Patch-Clamp Techniques; Piperazines; Propionates; Pyridazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Metabotropic Glutamate; Receptors, Presynaptic; Synaptic Transmission | 2003 |
AMPA and NMDA receptors mediate synaptic excitation in the rat's inferior colliculus.
The synaptic mechanisms underlying excitation in the rat's central nucleus of the inferior colliculus (ICC) were examined by making whole-cell patch clamp recordings in brain slice preparations of the auditory midbrain. Responses were elicited by current pulse stimulation of the lateral lemniscus and recordings were made in ICC using either current clamp or voltage clamp methods. The excitatory postsynaptic responses in either current or voltage clamp mode consisted of two distinct components, an early component that could be blocked by bath application of the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) or 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX), and a later component that could be blocked by application of the N-methyl-D-aspartate (NMDA) receptor antagonists, (+/-)-2-amino-5-phosphonovaleric acid (APV) or (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP). Both AMPA and NMDA receptor-mediated responses were present at resting potential and could be isolated pharmacologically by application of receptor antagonists. Voltage clamp experiments revealed that the NMDA receptor-mediated current was voltage-dependent and increased in magnitude as the cell membrane was depolarized. This NMDA receptor-mediated response was enhanced at resting potential when Mg(2+) was eliminated from the bath solution. The ratio of response amplitudes associated with the late and early components, an estimate of the relative contribution of NMDA and AMPA receptor types, changed with age. There was a progressive decline in the ratio between 9 and 13 days of age, but no further reduction between days 13 and 16. The data show that both AMPA and NMDA receptors are important for determining excitatory responses in the ICC and that both receptor types probably play a role in auditory processing after the onset of hearing. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Aging; Animals; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; In Vitro Techniques; Inferior Colliculi; Magnesium; Membrane Potentials; Patch-Clamp Techniques; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Synapses | 2002 |
Long-lasting synaptic modification in the rat hippocampus resulting from NMDA receptor blockade during development.
Recent reports have suggested that proper maturation of synapses in the hippocampus requires activation of NMDA receptors. We previously demonstrated that neonatal ethanol exposure results in a lasting reduction in synaptic strength in the hippocampus. To determine if this reduction was due to ethanol's effects on NMDA receptors, we investigated long-term changes in synaptic properties resulting from administration of NMDA receptor antagonists to neonatal animals. Rats were injected daily from PND 4-9 with either the noncompetitive NMDA receptor antagonist MK-801, the competitive NMDA receptor antagonist CPP, or the AMPA receptor antagonist NBQX. Control rats were either injected daily with physiological saline during the same period or left to develop normally. Hippocampal slices were prepared from nembutal-anesthetized animals between PND 35 and PND 40. The maximum pEPSP and PS values were not significantly different between controls and NMDA antagonist-treated animals. However, slices from animals injected with NMDA receptor antagonists required higher stimulus currents to attain comparable pEPSPs. The ratio of the slope of the pEPSP to the amplitude of the presynaptic volley was also reduced, as were pEPSP responses to specific stimulus currents. None of these effects were observed in slices prepared from animals treated with the AMPA receptor antagonist NBQX. Glutamate receptor antagonism did not produce lasting changes in long-term potentiation or paired-pulse facilitation. These results indicate activation of NMDA receptors during development is necessary for proper development of synapses. Topics: Animals; Behavior, Animal; Cell Differentiation; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Female; Hippocampus; Long-Term Potentiation; Neuronal Plasticity; Neurons; Organ Culture Techniques; Piperazines; Pregnancy; Quinoxalines; Rats; Receptors, N-Methyl-D-Aspartate; Synapses; Synaptic Transmission | 2002 |
Altered glutamate receptor function during recovery of bladder detrusor-external urethral sphincter coordination in a rat model of spinal cord injury.
Coordination of the bladder detrusor and the external urethral sphincter is a supraspinally controlled reflex that is essential for efficient micturition. This coordination is permanently lost after spinal cord transection but can recover chronically after incomplete spinal cord injury (SCI). As glutamatergic transmission plays a key role in all levels of detrusor-external urethral sphincter coordination, we examined the role of potential alterations in glutamatergic control in its recovery after SCI. Rats were subjected to standardized incomplete contusion injury. Detrusor-external urethral sphincter coordination was evaluated urodynamically at 5 days (subacute) and 8 weeks (chronic) after SCI. Sensitivity of coordinated activation of the external urethral sphincter in response to bladder distension to the alpha -amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid/kainate antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide disodium (NBQX) and to the N-methyl-D-aspartate (NMDA) antagonist R(--3-(2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) was determined by intrathecal application at the L6 spinal cord level during urodynamic recordings. We found that while detrusor contractions recovered at 5 days after SCI, coordinated activation of the external urethral sphincter was significantly impaired at 5 days and recovered only by 8 weeks. There was no difference in sensitivity of detrusor-external urethral sphincter coordination to NBQX at the subacute or chronic time points. However, external urethral sphincter response to bladder distension was sensitive to a 50% lower dose of CPP at 5 days compared with uninjured rats or chronic recovered SCI rats. Thus, alterations in NMDA receptor function appeared to be involved in recovery of detrusor-external urethral sphincter coordination after incomplete SCI. Topics: Animals; Excitatory Amino Acid Antagonists; Female; Hindlimb; Injections, Spinal; Muscle Contraction; Muscle, Smooth; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Spinal Cord Injuries; Urethra; Urinary Bladder; Urodynamics | 2002 |
AMPA-induced Ca(2+) influx in cultured rat cortical nonpyramidal neurones: pharmacological characterization using fura-2 microfluorimetry.
Immunocytochemical and Co(2+) uptake studies revealed that in primary cultures of rat cortical neurones, the majority of neurones are gamma-aminobutyric acid (GABA) immunopositive and can express Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. By fura-2 microfluorimetry, it was shown that the stimulation with the selective agonist (S)-AMPA (0.3-300 microM) induced a concentration-dependent but cell-variable increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) (EC(50) value 7.4 microM) in more than 80% of the medium-sized multipolar neurones studied. The AMPA-induced rise in [Ca(2+)](i) seems to be due to Ca(2+) entry through AMPA receptor channels, because the response was abolished in Ca(2+)-free solution and by AMPA receptor selective antagonists, but was not significantly influenced by cyclopiazonic acid, an inhibitor of the endoplasmatic Ca(2+)-ATPase, by selective N-methyl-D-aspartic acid (NMDA) receptor antagonists, as well as the Na(+) channel blocker tetrodotoxin and the majority of tested Ca(2+) channel blockers. In conclusion, the results indicate that the cerebral cortical neurones in culture represent mostly GABAergic interneurone-like cells and the majority of them possess Ca(2+)-permeable AMPA receptors, important for intracellular signal transduction and neuronal plasticity. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Benzodiazepines; Benzothiadiazines; Calcium; Cells, Cultured; Cerebral Cortex; Cobalt; Diazoxide; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fluorescence; Fluorometry; Fura-2; gamma-Aminobutyric Acid; Immunohistochemistry; N-Methylaspartate; Neurons; Piperazines; Quinoxalines; Rats; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 2002 |
Distinct effect of pregnenolone sulfate on NMDA receptor subtypes.
Using rapid agonist applications to transfected HEK-293 cells, we investigated pregnenolone sulfate (PS) effects on deactivation and desensitization of recombinant NMDA receptors subtypes. PS prolonged the deactivation of responses produced by brief applications of L-glutamate with all subunit combinations tested. The action of PS was larger on NR1a/NR2A than on NR1a/NR2B channels. PS slowed the rate of macroscopic desensitization of the responses with all subunit combinations tested. In contrast, PS had little effect on current rise time and had much reduced action on responses with L-cysteate, a low affinity agonist. Our results suggest that PS decreases agonist unbinding. However, this action is counteracted by decreased desensitization. Since desensitization produces slow deactivating components, particularly with NR1a/NR2B receptors, this underlies the decreased PS effect with these subtypes. Indeed PS action was mainly observed on the fast component of deactivation. Furthermore, prolongation of NR1a/NR2A responses was similar to that of responses from NR1b/NR2B receptor, a subtype characterized by reduced desensitization. PS prolongation of evoked NMDA receptor mediated synaptic currents from cortical neuronal primary culture(s) was not significantly different from that of responses with NR1a/NR2B receptors indicating that native receptors in these neurons comprised at least some heteromeric combinations of these two subunits. Topics: Animals; Animals, Newborn; Bicuculline; Cell Line; Cells, Cultured; Cerebral Cortex; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Glutamic Acid; Humans; Membrane Potentials; Neurons; Patch-Clamp Techniques; Piperazines; Pregnenolone; Protein Subunits; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, N-Methyl-D-Aspartate; Time Factors | 2001 |
AMPA and NMDA receptors regulate responses of neurons in the rat's inferior colliculus.
The contribution of N-methyl-D-aspartate (NMDA) and AMPA receptors to auditory responses in the rat's inferior colliculus was examined by recording single-unit activity before, during, and after local iontophoretic application of receptor-specific antagonists. Tone bursts and sinusoidal amplitude modulated sounds were presented to one ear, and recordings were made from the contralateral central nucleus of inferior colliculus (ICC). The receptor specific antagonists, (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) for NMDA receptors and 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX) for AMPA receptors, were released at the recording site through a multi-barreled pipette. For most neurons, either CPP or NBQX alone resulted in a reversible reduction in the number of action potentials evoked by tonal stimulation. For neurons with an onset response pattern, NBQX either completely eliminated or greatly reduced the number of action potentials. CPP also reduced the number of action potentials but had a less pronounced effect than NBQX. For neurons with a sustained firing pattern, NBQX reduced the total number of action potentials, but had a preferential effect on the early part (first 10-20 ms) of the response. CPP also resulted in a reduction in the total number of action potentials, but had a more pronounced effect on the later part (>20 ms) of the response. These results indicate that both AMPA and NMDA receptors contribute to sound evoked excitatory responses in the ICC. They have a selective influence on early and late components of tone-evoked responses. Both receptor types are involved in generating excitatory responses across a wide range of sound pressure levels as indicated by rate level functions obtained before and during drug application. In addition, both CPP and NBQX reduced responses to sinusoidal amplitude modulated sounds. The synchrony of firing to the modulation envelope as measured by vector strength at different rates of modulation was not greatly affected by either CPP or NBQX in spite of the decrease in firing rate. Topics: Acoustic Stimulation; Action Potentials; Animals; Electrophysiology; Excitatory Amino Acid Antagonists; Inferior Colliculi; Male; Neurons; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 2001 |
NMDA and AMPA receptors in the dorsal nucleus of the lateral lemniscus shape binaural responses in rat inferior colliculus.
Binaural responses of single neurons in the rat's central nucleus of the inferior colliculus (ICC) were recorded before and after local injection of excitatory amino acid receptor antagonists (either 1,2, 3,4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX], (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid [CPP], 6-cyano-7-nitroquinoxaline-2,3-dione [CNQX], or (+/-)-2amino-5-phosphonovaleric acid [APV]) into the dorsal nucleus of the lateral lemniscus (DNLL). Responses were evoked by clicks delivered separately to the two ears at interaural time delays between -1.0 and +30 ms (positive values referring to ipsilateral leading contralateral click pairs). The neurons in our sample were excited by contralateral stimulation and inhibited by ipsilateral stimulation, and the probability of action potentials was reduced as the ipsilateral stimulus was advanced. Binaural inhibition resulted in response suppression that lasted up to 30 ms. Injection of excitatory amino acid antagonists into the DNLL contralateral to the recording site reduced the strength of binaural inhibition in the ICC. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonist NBQX preferentially affected responses at small interaural time intervals (0-1.0 ms), whereas the N-methyl-D-aspartate (NMDA) antagonist CPP preferentially affected responses at longer intervals (1-30 ms). Both CNQX and APV produced a release from binaural inhibition, but neither drug was selective for specific intervals. The data support the idea that binaural inhibition in the rat ICC is influenced by both AMPA and NMDA receptor-mediated excitatory events in the contralateral DNLL. The results suggest that the AMPA receptors contribute selectively to the initial component of binaural inhibition and the NMDA receptors to a longer lasting component. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Acoustic Stimulation; Animals; Cochlear Nucleus; Excitatory Amino Acid Antagonists; Functional Laterality; Hearing; In Vitro Techniques; Inferior Colliculi; Male; Piperazines; Pons; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Time Factors | 2000 |
Ionotropic glutamate receptor-mediated responses in the rat primary somatosensory cortex evoked by noxious and innocuous cutaneous stimulation in vivo.
To examine the involvement of different ionotropic glutamate receptors in the mediation of responses evoked by noxious cutaneous stimulation, single unit recordings were made from 31 neurons in the primary somatosensory (SI) cortex of rats anesthetized with urethane. To compare synaptic receptor pharmacology across somatosensory submodalities, 13 of the neurons were also tested with an innocuous, cutaneous air jet stimulus. Mechanical (HT) responses, evoked by a 5-s noxious pinch, decayed gradually upon termination of the stimulus and lasted on average for 15.1+/-1.9 s (+/-SEM; n=10). An increase in baseline activity was also observed during noxious stimulus trials of 5-min stimulus intervals. A correlation between increase in mechanical or thermal HT responses and baseline activity was found for some neurons. However, the normalized ratios of the mechanical or thermal HT response to baseline activity during iontophoretic application of (RS)-3-(2-carboxypiperazine-4-yl)-propyl-l-phosphonic acid (CPP), an N-methyl-D-aspartic acid (NMDA) receptor antagonist (0.6+/-0.1; n=11, or 6-nitro-7-sulfamoylbenz[f]quinoxaline-2,3-dione (NBQX), an (RS)-alpha-amino-3-hydroxy5-methyl-4-isoxazolepropionic acid (AMPA)/kainate receptor antagonist (0.8+/-0.1; n=11), suggest that the reductions in baseline activity did not account for the reductions of the mechanical or thermal HT responses observed, which were reduced proportionally more than the baseline activity. A 10-ms air jet evoked a biphasic increase in action potentials above an average background activity of 7+/-2 spikes/s (n=13). The early phase of this low-threshold (LT) response was within two or three 10-ms bins and had an average firing rate of 74+/-11 spikes/s evoked in the first 10-ms bin (n=13). In eight neurons, the early LT response was followed by a lower frequency excitatory component lasting an average of 415+/-92 ms. Iontophoretic application of CPP reduced responses evoked by a noxious pinch (21+/-10% of control responses; n=19) and a noxious thermal stimulus (24+/-18%; n=5). The fast component of the LT responses was only reduced to 85+/-4% (n=12). A slower component of the LT responses, when present, was also reduced by CPP (15+/-19%; n=4). Iontophoretic application of NBQX reduced responses evoked by a noxious pinch (42+/-12%; n=19) and a noxious thermal stimulus (63+/-16%; n=8). The fast component of the LT responses was reduced to 43+/-6% (n=12) and the slower component to 32+/-20% (n=6). These d Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Excitatory Amino Acid Antagonists; Hot Temperature; Male; N-Methylaspartate; Neurons; Pain; Piperazines; Quinoxalines; Rats; Rats, Wistar; Reaction Time; Receptors, Glutamate; Skin; Somatosensory Cortex; Synapses; Time Factors | 2000 |
Superoxide dismutase activity and the effects of NBQX and CPP on lipid peroxidation in experimental spinal cord injury.
The endogenous activity of the neuroprotective enzyme superoxide dismutase (SOD) and the amount of lipid peroxidation in the early phase of experimental spinal cord injury, together with the effects of N-methyl-D-aspartate (NMDA) antagonist CPP and non-NMDA antagonist NBQX on lipid peroxidation were evaluated. The clip compression model was used for the production of a standardized spinal cord trauma. SOD activity and malondialdehyde (MDA) levels--as an indicator of lipid peroxidation--were determined in the injured segment of the spinal cord 30 and 60 min after injury. SOD activity did not change in this period, whereas MDA levels at 30 and 60 min after trauma were significantly elevated. Intrathecal administration of CPP or NBQX 15 min after injury produced statistically significant reductions in MDA elevation 60 min after injury. NBQX was found to be more effective than CPP. These results demonstrated that intrathecal local application of excitatory amino acid receptor antagonists can protect the spinal cord from secondary damage caused by the generation of lipid peroxides in experimental spinal cord injury. Topics: Animals; Excitatory Amino Acid Antagonists; Lipid Peroxidation; Male; Malondialdehyde; N-Methylaspartate; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Spinal Cord; Spinal Cord Injuries; Superoxide Dismutase | 2000 |
Non-NMDA receptor-mediated mechanisms are involved in levodopa-induced motor response alterations in Parkinsonian rats.
Chronic dopaminomimetic administration to parkinsonian animal models or Parkinson's disease patients leads to characteristic alteration in motor response. Previous studies suggested that the nonphysiologic stimulation of dopaminergic receptors on striatal medium spiny neurons enhances the synaptic efficacy of juxtaposed glutamate receptors of the N-methyl-D-aspartate (NMDA) subtype. Resultant NMDA receptor sensitization due to differential changes in subunit phosphorylation appears to favor alterations in striatal output in ways that influence motor function. To detail the involvement of NMDA receptors further as well as to determine whether similar functional changes might develop in alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors, the effects of selective antagonist of AMPA receptors (6-nitro-7-sulfamoyl-benzo[f]-quinoxaline-2,3 (1H,4H)-dione sodium salt, NBQX, 10 mg/kg) on levodopa-induced response alterations in 6-hydroxydopamine (6-OHDA) lesioned rats were compared with drugs which act competitively (3-(+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonicacid, CPP, 6.25 mg/kg) or noncompetitively (dextromethorphan, 40 mg/kg) to block NMDA receptors, or a nonselective inhibitor of glutamatergic transmission (2-amino-6-trifluoromethoxy benzothiazole, riluzole, 5 mg/kg). We found that the shortened duration of the motor response to levodopa, which underlies human wearing-off fluctuations, was reversed to a similar degree by the acute coadministration of CPP, NBQX, or riluzole (n = 4-6) but dextromethorphan did not. These observations strengthen the possibility that a reduction in levodopa-associated changes in motor response by inhibitors of glutamatergic transmission acting generally or selectively at the glutamate binding-sites may relate to their ability to attenuate pathologic gain in striatal glutamatergic function. The capacity of NBQX to reverse these altered responses suggests that an enhanced synaptic efficacy of striatal AMPA receptors may also participate in the generation of these motor response changes in levodopa-treated parkinsonian rats. Topics: Animals; Antiparkinson Agents; Dextromethorphan; Excitatory Amino Acid Antagonists; Levodopa; Male; Motor Activity; Parkinsonian Disorders; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Reaction Time; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Riluzole; Rotation | 2000 |
Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey.
How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. In the present study, by using awake monkeys, the polysynaptic effects of electrical stimulation in the forelimb regions of the primary motor and primary somatosensory cortices on the activity of globus pallidus (GP) neurons, especially mediated by the subthalamic nucleus (STN), have been characterized. Cortical stimulation induced an early, short-latency excitation followed by an inhibition and a late excitation in neurons of both the external and internal segments of the GP. It also induced an early, short-latency excitation followed by a late excitation and an inhibition in STN neurons. The early excitation in STN neurons preceded that in GP neurons. Blockade of STN neuronal activity by muscimol (GABA(A) receptor agonist) injection resulted in abolishment of both the early and late excitations evoked in GP neurons by cortical stimulation. At the same time, the spontaneous discharge rate of GP neurons decreased, pauses between the groups of spikes of GP neurons became prominent, and the firing pattern became regular. Injection of (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) [N-methyl-D-aspartate (NMDA) receptor antagonist], but not 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX (non-NMDA receptor antagonist)], into the STN attenuated the early and late excitations in GP neurons, suggesting that cortico-subthalamic transmission is mediated mainly by NMDA receptors. Interference with the pallido-subthalamic transmission by bicuculline (GABA(A) receptor antagonist) injection into the STN made the inhibition distinct without affecting the early excitation. The present results indicate that the cortico-subthalamo-pallidal pathway conveys powerful excitatory effects from the motor-related cortical areas to the GP with shorter conduction time than the effects conveyed through the striatum. Topics: Animals; Bicuculline; Brain Mapping; Cerebral Cortex; Electric Stimulation; Electrophysiology; Excitatory Amino Acid Antagonists; Female; GABA Agonists; GABA Antagonists; Globus Pallidus; Macaca; Membrane Potentials; Microinjections; Muscimol; Neural Pathways; Neurons; Piperazines; Quinoxalines; Reaction Time; Subthalamic Nucleus | 2000 |
Neuronal death enhanced by N-methyl-D-aspartate antagonists.
Glutamate promotes neuronal survival during brain development and destroys neurons after injuries in the mature brain. Glutamate antagonists are in human clinical trials aiming to demonstrate limitation of neuronal injury after head trauma, which consists of both rapid and slowly progressing neurodegeneration. Furthermore, glutamate antagonists are considered for neuroprotection in chronic neurodegenerative disorders with slowly progressing cell death only. Therefore, humans suffering from Huntington's disease, characterized by slowly progressing neurodegeneration of the basal ganglia, are subjected to trials with glutamate antagonists. Here we demonstrate that progressive neurodegeneration in the basal ganglia induced by the mitochondrial toxin 3-nitropropionate or in the hippocampus by traumatic brain injury is enhanced by N-methyl-d-aspartate antagonists but ameliorated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate antagonists. These observations reveal that N-methyl-d-aspartate antagonists may increase neurodestruction in mature brain undergoing slowly progressing neurodegeneration, whereas blockade of the action of glutamate at alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate receptors may be neuroprotective. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Brain Injuries; Cell Death; Dizocilpine Maleate; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; Memantine; N-Methylaspartate; Neurons; Neuroprotective Agents; Neurotoxins; Nitro Compounds; Piperazines; Propionates; Quinoxalines; Rats; Rats, Wistar; Wounds and Injuries | 2000 |
Synaptic transmission at nicotinic acetylcholine receptors in rat hippocampal organotypic cultures and slices.
1. Whole-cell clamp recordings of the compound synaptic current elicited by afferent stimulation of Schaffer collaterals showed that blockade of the NMDA, AMPA and GABAA receptor-mediated components by 6-nitro-7-sulphamoyl- benzo(f)quinoxaline-2,3-dione (NBQX), 3-((R)-2-carboxypiperazine-4-yl)propyl-1-phosphonate (R-CPP) and picrotoxin, respectively, left a small residual current in 39 out of 41 CA1 pyramidal neurones in organotypic cultures and 9 out of 16 CA1 cells in acutely prepared slices. 2. This current represented 2. 9 +/- 0.4 % of the compound evoked synaptic response in organoypic cultures and 1.4 +/- 0.5 % in slices. It was characterized by a slightly rectifying I-V curve and a reversal potential of 3.4 +/- 5. 1 mV. 3. This residual current was insensitive to blockers of GABAB, purinergic, muscarinic and 5-HT3 receptors, but it was essentially blocked by the nicotinic receptor antagonist d-tubocurarine (91 +/- 4 % blockade; 20 microM), and partly blocked by alpha-bungarotoxin (200 nM) and methyllycaconitine (10 nM), two antagonists with a higher selectivity for alpha7 subunit-containing nicotinic receptors (48 +/- 3 % and 55 +/- 11 % blockade, respectively). 4. The residual current was of synaptic origin, since it occurred after a small delay; its amplitude depended upon the stimulation intensity and it was calcium dependent and blocked by the sodium channel antagonist tetrodotoxin. 5. We conclude that afferent stimulation applied in the stratum radiatum evokes in some hippocampal neurones a small synaptic current mediated by activation of neuronal nicotinic receptors. Topics: Aconitine; Animals; Bungarotoxins; Evoked Potentials; Excitatory Amino Acid Antagonists; GABA Antagonists; Hippocampus; Nicotinic Antagonists; Organ Culture Techniques; Picrotoxin; Piperazines; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Nicotinic; Synaptic Transmission; Tubocurarine | 1999 |
Glutamate receptor-mediated mechanisms in levodopa-induced motor fluctuations in an experimental model of parkinsonism.
Topics: Animals; Dyskinesia, Drug-Induced; Excitatory Amino Acid Antagonists; Levodopa; Male; Parkinson Disease, Secondary; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Rotation; Stereotyped Behavior; Time Factors | 1999 |
Selective glutamate receptor antagonists can induce or prevent axonal sprouting in rat hippocampal slice cultures.
After the transection of the Schaffer collateral pathway in hippocampal slice cultures, reactive sprouting is induced in the CA3 area, and eventually synaptic transmission between areas CA1 and CA3 is restored. Using this model, we have studied the role of ionotropic glutamate receptors in the initiation of axonal sprouting and the regeneration of functional synapses. We show that neither reactive sprouting nor functional recovery of synaptic transmission occur in the presence of the non-N-methyl-D-aspartate (NMDA) receptor antagonist 6-nitro-7-sulfamoylbenzoquinoxaline-2,3-dione (CNQX). In contrast, the NMDA receptor antagonists methyl-10, 11-dihydro-5-H-dibenzocyclohepten-5,10-imine (MK-801) or 3-(RS)-2-carboxypiperazine-4-yl)-propyl-1-phosphonic acid (CPP) did not interfere with these processes. Moreover, we observed that the application of NMDA receptor antagonists induced massive axonal sprouting and an increase in the frequency of miniature excitatory postsynaptic currents in unlesioned cultures. Our results thus indicate that NMDA and non-NMDA receptors exert a differential effect on reactive sprouting and the recovery of synaptic transmission after injury in the hippocampus. Activation of non-NMDA receptors appears necessary for these processes to occur, whereas activation of NMDA receptors suppresses growth-associated protein -43 expression and axonal outgrowth. Topics: Animals; Axons; Culture Techniques; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; GAP-43 Protein; Glial Fibrillary Acidic Protein; Hippocampus; Nerve Regeneration; Piperazines; Quinoxalines; Rats; Rats, Wistar | 1999 |
Galanin stimulates the N-methyl-D-aspartate receptor/nitric oxide/cyclic GMP pathway in vivo in the rat ventral hippocampus.
We investigated whether the neuropeptide galanin affects the nitric oxide synthase/cyclic GMP pathway in rat hippocampus by measuring in vivo the extracellular cyclic GMP levels during microdialysis. Galanin (2.5 and 3.5 nmol; i.c.v.) dose-dependently raised the extracellular levels of cyclic GMP in the ventral but not the dorsal hippocampus. The effect of 3.5 nmol galanin was blocked by local application of tetrodotoxin and inhibited by the high-affinity galanin antagonist M40 (galanin-[1-12]-Pro3-[Ala-Leu]2-Ala amide). The non-competitive N-methyl-D-aspartate receptor antagonist dizocilpine maleate (30 microM infused into the ventral hippocampus or 0.2 mg/kg, i.p.) and the competitive one, 3-([R]-carboxypiperazin-4-yl)-propyl-phosphonic acid (50 microM infused), but not local perfusion of the AMPA antagonist 6-nitro-7-sulphamoylbenzo(f)quinoxaline-2,3-dione (15 microM) abolished the galanin-evoked cyclic GMP response in the hippocampus. Inhibitors of nitric oxide synthase, L-Arg(NO2)-OMe.HCl and 7-nitroindazole monosodium salt, applied locally, blocked the galanin-induced increase in hippocampal extracellular cyclic GMP. This increase was also prevented by local application of 1H-(1,2,4)oxadiazolo(4,3a) quinoxalin-1-one, a selective inhibitor of soluble guanylyl cyclase. The galanin receptors mediating the rise in cyclic GMP reside outside the hippocampus, as galanin (0.35-3 nmol) locally applied had no effect. The results provide in vivo evidence that galanin stimulates the N-methyl-D-aspartate receptor/nitric oxide synthase/cyclic GMP pathway in the ventral hippocampus, which may be of importance in memory processes. Topics: Animals; Cyclic GMP; Dizocilpine Maleate; Enzyme Inhibitors; Excitatory Amino Acid Antagonists; Galanin; Hippocampus; Locomotion; Male; Microdialysis; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Oxadiazoles; Peptide Fragments; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Tetrodotoxin | 1998 |
EAA receptors in the dorsomedial hypothalamic area mediate the cardiovascular response to activation of the amygdala.
The role of excitatory amino acid (EAA) receptors in the dorsomedial hypothalamus (DMH) in mediating the cardiovascular response to activation of the basolateral amygdala (BLA) was examined using conscious rats. Microinjection of the nonselective EAA receptor antagonist kynurenic acid (0.1-10 nmol) into the DMH blocked or reversed the increases in heart rate and arterial pressure resulting from injection of the GABAA receptor antagonists bicuculline methiodide (BMI; 100 pmol) and picrotoxin (100 pmol) into the BLA. Similar injections of kynurenic acid at sites lateral or dorsal to the DMH or injection of the inactive analog xanthurenic acid into the DMH were less effective in blocking the cardiovascular changes resulting from intra-amygdalar injection of BMI. Hypothalamic injection of the NMDA receptor antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (10 pmol) or the DL-alpha-amino-3-hydroxy-5-methylisoxazole-propionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide (50 pmol) at doses shown to be selective for their respective EAA receptor subtypes attenuated the cardiovascular changes associated with intra-amygdalar injection of BMI. Therefore, EAA receptors in the area of the DMH appear to be involved in mediating the cardiovascular changes resulting from activation of the amygdala. Topics: Amygdala; Animals; Bicuculline; Brain Mapping; Dorsomedial Hypothalamic Nucleus; Excitatory Amino Acid Antagonists; GABA-A Receptor Antagonists; Heart Rate; Kynurenic Acid; Male; Microinjections; Picrotoxin; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Amino Acid; Time Factors | 1998 |
Glial contribution to glutamate uptake at Schaffer collateral-commissural synapses in the hippocampus.
Astrocytes in the hippocampus express high-affinity glutamate transporters that are important for lowering the concentration of extracellular glutamate after release at excitatory synapses. These transporters exhibit a permeability to chaotropic anions that is associated with transport, allowing their activity to be monitored in cell-fee patches when highly permeant anions are present. Astrocyte glutamate transporters are highly temperature sensitive, because L-glutamate-activated, anion-potentiated transporter currents in outside-out patches from these cells exhibited larger amplitudes and faster kinetics at 36 degreesC than at 24 degreesC. The cycling rate of these transporters was estimated by using paired applications of either L-glutamate or D-aspartate to measure the time necessary for the peak of the transporter current to recover from the steady-state level. Transporter currents in patches recovered with a time constant of 11.6 msec at 36 degreesC, suggesting that either the turnover rate of native transporters is much faster than previously reported for expressed EAAT2 transporters or the efficiency of these transporters is very low. Synaptically activated transporter currents persisted in astrocytes at physiological temperatures, although no evidence of these currents was found in CA1 pyramidal neurons in response to afferent stimulation. L-glutamate-gated transporter currents were also not detected in outside-out patches from pyramidal neurons. These results are consistent with the hypothesis that astrocyte transporters are responsible for taking up the majority of glutamate released at Schaffer collateral-commissural synapses in the hippocampus. Topics: Amino Acid Transport System X-AG; Animals; Astrocytes; ATP-Binding Cassette Transporters; Biological Transport; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Glutamic Acid; Hippocampus; Male; Membrane Potentials; Nerve Fibers; Patch-Clamp Techniques; Piperazines; Pyramidal Cells; Quinoxalines; Rats; Rats, Sprague-Dawley; Synapses; Temperature | 1998 |
Prevention of normally occurring and deafferentation-induced neuronal death in chick brainstem auditory neurons by periodic blockade of AMPA/kainate receptors.
The role of glutamate receptors in regulating programmed neuronal death and deafferentation-induced neuronal death in the brainstem auditory nuclei was studied by in ovo drug administration to chick embryos. The nucleus laminaris (NL) undergoes programmed developmental cell death of 19% between embryonic day 9 (E9) and E17. The AMPA/kainate receptor antagonist CNQX, when administered at doses of 200-300 microg/d from E8 to E15, prevented programmed neuronal death in NL through at least posthatching day 8, without producing anatomical or behavioral abnormalities. 3-((RS)-2-Carboxypiperazin-4-yl)-propyl-1-phos-phonic acid, an antagonist of NMDA receptors, had no effect on normal cell death in the NL. CNQX, given from E8 to E15 or only from E8 to E10, also blocked the 33% neuronal loss in the nucleus magnocellularis (NM) that follows surgical destruction of the otocyst on E3, a procedure that deafferents NM neurons by preventing formation of the cochlear nerve. Treatment either with CNQX or the more highly selective NBQX from E8 to E10, before the onset of synaptic transmission in NM and NL, was also effective in preventing normal neuronal death in NL. Analysis of the effects of CNQX or NBQX on spontaneous embryonic motility at E10 showed that the doses effective in preventing neuronal death suppressed motility for <8 hr. We conclude that periodic blockade of AMPA/kainate receptors can protect CNS neurons against subsequent programmed cell death or deafferentation-induced death. Topics: 6-Cyano-7-nitroquinoxaline-2,3-dione; Animals; Auditory Pathways; Brain Stem; Cell Death; Cell Survival; Chick Embryo; Excitatory Amino Acid Antagonists; Kinetics; Neurons; Piperazines; Quinoxalines; Receptors, AMPA; Receptors, Kainic Acid; Time Factors | 1997 |
Interaction of GABA and excitatory amino acids in the basolateral amygdala: role in cardiovascular regulation.
Activation of the amygdala in rats produces cardiovascular changes that include increases in heart rate and arterial pressure as well as behavioral changes characteristic of emotional arousal. The objective of the present study was to examine the interaction of GABA and excitatory amino acid (EAA) receptors in the basolateral amygdala (BLA) in regulating cardiovascular function. Microinjection of the GABAA receptor antagonist bicuculline methiodide (BMI) or the E A A receptor agonists NMDA or AMPA into the same region of the BLA of conscious rats produced dose-related increases in heart rate and arterial pressure. Injection of the nonselective EAA receptor antagonist kynurenic acid into the BLA prevented or reversed the cardiovascular changes caused by local injection of BMI or the noncompetitive GABA antagonist picrotoxin. Conversely, local pretreatment with the glutamate reuptake inhibitor L-trans-pyrrolidine-2,4-dicarboxylic acid enhanced the effects of intra-amygdalar injection of BMI. The cardiovascular effects of BMI were also attenuated by injection of either the NMDA antagonist 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) or the AMPA receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2, 3-dioxo-benzo[f]quinoxaline-7-sulfonamide (NBQX). When these two EAA receptor antagonists were combined, their ability to suppress BMI-induced tachycardic and pressor responses was additive. These findings indicate that the cardiovascular effects caused by blockade of GABAergic inhibition in the BLA of the rat are dependent on activation of local NMDA and AMPA receptors. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amygdala; Animals; Arousal; Bicuculline; Blood Pressure; Dicarboxylic Acids; Excitatory Amino Acid Agonists; Excitatory Amino Acid Antagonists; GABA Antagonists; gamma-Aminobutyric Acid; Heart Rate; Hemodynamics; Kynurenic Acid; Male; N-Methylaspartate; Neurotransmitter Uptake Inhibitors; Picrotoxin; Piperazines; Pyrrolidines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate | 1997 |
Traumatic brain damage prevented by the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo[f] quinoxaline.
The mechanisms of neuronal degeneration following traumatic head injury are not well understood and no adequate treatment is currently available for the prevention of traumatic brain damage in humans. Traumatic head injury leads to primary (at impact) and secondary (distant) damage to the brain. Mechanical percussion of the rat cortex mimics primary damage seen after traumatic head injury in humans; no animal model mimicking the secondary damage following traumatic head injury has yet been established. Rats subjected to percussion trauma of the cortex showed primary damage in the cortex and secondary damage in the hippocampus. Morphometric analysis demonstrated that both cortical and hippocampal damage was mitigated by pretreatment with either the N-methyl-D-aspartate (NMDA) antagonist 3-((+/-)- 2-carboxypiperazin-4-yl)-propyl-1-phosphonate (CPP) or the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline (NBQX). Neither treatment prevented primary damage in the cortex when therapy was started after trauma. Surprisingly, delayed treatment of rats with NBQX, but not with CPP, beginning between 1 and 7 hr after trauma prevented hippocampal damage. No protection was seen when therapy with NBQX was started 10 hr after trauma. These data indicate that both NMDA- and non-NMDA-dependent mechanisms contribute to the development of primary damage in the cortex, whereas non-NMDA mechanisms are involved in the evolution of secondary damage in the hippocampus in rats subjected to traumatic head injury. The wide therapeutic time-window documented for NBQX suggests that antagonism at non-NMDA receptors may offer a novel therapeutic approach for preventing deterioration of the brain after head injury. Topics: Animals; Brain Injuries; Cerebral Cortex; Disease Models, Animal; Excitatory Amino Acid Antagonists; Hippocampus; Humans; Male; N-Methylaspartate; Nerve Degeneration; Neurons; Piperazines; Quinoxalines; Rats; Rats, Inbred F344; Time Factors; Wounds, Nonpenetrating | 1996 |
Prevention of trauma-induced neurodegeneration in infant rat brain.
Recent evidence implicates the endogenous excitatory neurotransmitters, glutamate (Glu) and aspartate, in the pathophysiology of traumatic injury in the adult CNS, but it is not known whether similar excitotoxic mechanisms mediate traumatic injury in the immature CNS. Therefore, we developed a model of brain contusion injury in infant rats and used this model to study the nature and evolution of the acute cytopathologic changes and to evaluate the ability of Glu receptor antagonists to protect the immature brain against such changes. Seven-day-old rat pups were subjected to contusion injury and were killed 0, 0.5, 1, 2, 4, and 6 h later for histologic evaluation of the brain. Physical tearing of the dura and minor disruption of underlying brain tissue was noted at 0 h. At 30 min a discrete zone of neuronal necrosis began to appear at the border of the trauma site; this zone progressively expanded over a period of 4 h. The cytopathologic changes closely resembled the type of changes Glu is known to cause; these changes consisted of swollen dendrites, degenerating neurons with pyknotic nuclei and markedly swollen cytoplasm, and dark cells with vacuolated cytoplasm. The noncompetitive N-methyl-D-aspartate (NMDA) antagonist, dizocilpine maleate, when administered 30 min before or 1 h after trauma, significantly attenuated the lesion. The competitive NMDA antagonist, 3-((-2)-carboxypiperazine-4-yl)-propyl-1-phosphonate, was also neuroprotective. The alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor antagonist 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)quinoxaline did not significantly suppress the lesion when given as three treatments (30 mg/kg each) 30 min before plus 15 and 75 min after the insult. These findings suggest that traumatic injury in the infant rat brain is mediated by endogenous excitotoxins (Glu and aspartate) acting at NMDA receptors and can be substantially mitigated by timely treatment with NMDA receptor antagonists. Topics: Animals; Brain Injuries; Dendrites; Dizocilpine Maleate; Excitatory Amino Acid Antagonists; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Time Factors; Wounds and Injuries | 1996 |
Phenylglycines can evoke quisqualate-primed depolarizations in rat cingulate cortex: an effect associated with [3H]DL-AP4 uptake.
Depolarization could be evoked in slices of rat cingulate cortex by the normally non-excitatory compound L-2-amino-4-phosphonobutyrate (L-AP4) if the slices had been sensitized by exposure to quisqualate. The magnitude of the response to L-AP4 was dependent on the concentrations of both L-AP4 and quisqualate and was inhibited by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor antagonism. A series of phenylglycine analogues were capable of evoking similar dose-dependent depolarizations in the rat cingulate cortex following quisqualate sensitization, the most potent being (S)-4-carboxy-3-hydroxyphenylglycine. If the superfusate collected during application of (S)-4-carboxy-3-hydroxyphenylglycine to a quisqualate-sensitized slice was administered to a slice not previously exposed to quisqualate, a small depolarization was obtained. All the compounds shown to be capable of evoking the quisqualate-sensitized response showed affinity for the L-AP4 uptake site whilst having no affinity at ionotropic glutamate receptors and different profiles of activity at metabotropic glutamate receptors. None of the compounds was active at the metabotropic glutamate 4a receptor. There was a statistically significant correlation between a compound's effectiveness in inhibiting [3H]DL-AP4 uptake into rat cortical synaptosomes and its potency in evoking quisqualate-sensitized depolarization. It is concluded that this response may be the result of hetero-exchange between L-AP4 ligands and quisqualate. Topics: Aminobutyrates; Animals; Cerebral Cortex; Dose-Response Relationship, Drug; Electrophysiology; Excitatory Amino Acid Antagonists; Glycine; Gyrus Cinguli; Osmolar Concentration; Piperazines; Quinoxalines; Quisqualic Acid; Rats; Tritium | 1996 |
Differential regulation by N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors of acetylcholine release from the rat striatum in vivo.
The modulation of striatal cholinergic neurons by glutamatergic inputs was studied by monitoring the output of acetylcholine collected via a transversal microdialysis probe implanted into the striatum of freely moving rats. A transversal microdialysis membrane was inserted in the striatum and acetylcholine or GABA levels in the dialysate were measured. Acetylcholine levels in the dialysate were quantified by a high-performance liquid chromatography method with an electrochemical detector, while GABA levels were measured by a high-performance liquid chromatography method with a fluorescence detector. The dialysis membrane was perfused with Ringer solution containing 7 microM physostigmine sulphate and drugs, dissolved in the perfusion solution, were administered locally via the dialysis membrane. Local administration of the N-methyl-D-aspartate antagonist 3-[(RS)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (25-100 microM) brought about a decrease in striatal acetylcholine output which was dose-dependent, reversible and partially antagonized by 100 microM N-methyl-D-aspartate. On the other hand, local administration of the non-N-methyl-D-aspartate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoil-benzo(F)quinoxaline was followed by an increase in acetylcholine output which reached a maximum of about +55% at 12.8 microM 2,3-dihydroxy-6-nitro-7-sulfamoil-benzo(F)quinoxaline and was readily reversed when the drug was withdrawn from the perfusion solution. Local administration of the non-N-methyl-D-aspartate receptor agonist (S)-alfa-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (50 and 200 microM) decreased acetylcholine output and this effect was reversed by simultaneous perfusion with the GABA antagonist bicuculline (50 microM).(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Acetylcholine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; gamma-Aminobutyric Acid; Male; Microdialysis; Neostriatum; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, AMPA; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate | 1995 |
Evidence for N-methyl-D-aspartate and AMPA subtypes of the glutamate receptor on substantia nigra dopamine neurons: possible preferential role for N-methyl-D-aspartate receptors.
The present studies utilized extracellular single-unit recordings in chloral hydrate-anesthetized rats to evaluate the contribution of N-methyl-D-aspartate (NMDA) and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtypes of glutamate receptors to the excitatory effects of glutamate on substantia nigra dopamine neurons. Iontophoretic administration of NMDA, AMPA and glutamate increased the firing rate and amount of burst-firing of dopamine neurons. Iontophoretic application of the NMDA antagonist (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-l-phosphonic acid (CPP) inhibited the excitatory effect of NMDA and glutamate, but not that of AMPA. Iontophoretic application of the AMPA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX), inhibited the excitatory effect of AMPA and glutamate, but not that of NMDA. CPP produced a greater antagonism of the glutamate excitation than did NBQX. In addition, CPP, but not NBQX, reduced the firing rate and burst-firing of a subpopulation of DA neurons. These data indicate that both NMDA and AMPA receptors are present on substantia nigra dopamine neurons and suggest that NMDA receptors may be more sensitive than AMPA receptors to endogenous glutamate and that a tonic glutamate tone, acting via NMDA receptor stimulation, may modulate the firing rate and burst-firing activity of some dopamine neurons. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Dopamine; Glutamic Acid; Iontophoresis; Male; N-Methylaspartate; Neurons; Piperazines; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, N-Methyl-D-Aspartate; Substantia Nigra | 1995 |
Effects of some excitatory amino acid antagonists on imipenem-induced seizures in DBA/2 mice.
The behavioural and convulsant effects of imipenem (Imi), a carbapenem derivative, were studied after intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) administration in DBA/2 mice, a strain genetically susceptible to sound-induced seizures. The anticonvulsant effects of some excitatory amino acid antagonists and muscimol (Msc), a GABAA agonist, against seizures induced by i.p. or i.c.v. administration of Imi were also evaluated. The present study demonstrated that the order of anticonvulsant activity in our epileptic model, after i.p. administration, was (+)-5-methyl-10,11-dihydro-5H-dibenzo(a,d)-cyclohepten-5,10-imine maleate (MK-801) > (+/-)(E)-2-amino-4-methyl-5-phosphono-3-pentenoate ethyl ester (CGP 39551) > 3-((+/-)-2-carboxypiperazin-4-yl)propenyl-1-phosphonic acid (CPPene) > 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CCP) > 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(F)-quinoxaline (NBQX). Ifenprodil, a compound acting on the polyamine site of NMDA receptor complex was unable to protect against seizures induced by Imi, suggesting that the poliamine site did not exert a principal role in the genesis of seizures induced by Imi. In addition, the order of anticonvulsant potency in our epileptic model, after i.c.v. administration, was CPPene > MK-801 > Msc > (-)-2-amino-7-phosphonic acid (AP7) > gamma-D-glutamylaminomethylsulphonate (gamma-D-GAMS) > NBQX > kynurenic acid (KYNA) > 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). The relationship between the different site of action and the anticonvulsant activity of these derivatives was discussed. Although the main mechanism of Imi induced seizures cannot be easily determined, potential interactions with the receptors of the excitatory amino acid neurotransmitters exists. In fact, antagonists of excitatory amino acids are able to increase the threshold for the seizures or to prevent the seizures induced by Imi. In addition, Imi acts on the central nervous system by inhibition of GABA neurotransmission and Msc, a selective GABAA agonist, was able to protect against seizures induced by Imi. Topics: 2-Amino-5-phosphonovalerate; 6-Cyano-7-nitroquinoxaline-2,3-dione; Amino Acids; Animals; Anticonvulsants; Dizocilpine Maleate; Excitatory Amino Acids; Glutamine; Imipenem; Kynurenic Acid; Mice; Mice, Inbred DBA; Muscimol; Piperazines; Piperidines; Quinoxalines; Seizures | 1995 |
Modulation of dopamine D1-mediated turning behavior and striatal c-fos expression by the substantia nigra.
In order to study the possible contribution of the substantia nigra (SN) in the positive interaction between dopamine D1 receptor agonists and glutamate antagonists in unilaterally 6-hydroxydopamine (6-OHDA) lesioned rats, the effect of the D1 agonist, SKF 38393, was studied in combination with intranigral infusions of glutamate antagonists of the NMDA (MK 801, CPP) or AMPA (NBQX) type of receptor. Local infusion into the SN of the 6-OHDA lesioned side of MK 801, CPP or NBQX at doses inducing no or minimal behavioral effects significantly increased the turning behavior and the expression of c-fos induced, in the lesioned caudate-putamen (CPu), by a parenteral administration of SKF 38393. The same result was obtained after intra-SN infusion of the GABA agonist, muscimol. High doses of MK 801, CPP or muscimol infused into the SN produced intense contralateral turning per se and induced a sparse c-fos expression in the lesioned CPu which was antagonized by parenteral administration of MK 801. The results indicate that a depression of SN pars reticulata efferent neurons potentiates D1-mediated responses and suggest that this area may play a role in the positive interaction between glutamate antagonists and D1 receptor agonists. Topics: 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Dizocilpine Maleate; Immunohistochemistry; Injections; Male; Neostriatum; Oxidopamine; Piperazines; Proto-Oncogene Proteins c-fos; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, AMPA; Receptors, Dopamine D1; Receptors, N-Methyl-D-Aspartate; Stereotyped Behavior; Substantia Nigra; Sympathectomy, Chemical | 1995 |
Comparison of the effects of NMDA and AMPA antagonists on the locomotor activity induced by selective D1 and D2 dopamine agonists in reserpine-treated mice.
This study examined the interaction between various glutamate antagonists and selective D1 (SKF 38393) and D2 (RU 24213) dopamine agonists in the production of locomotion in the reserpine-treated mouse. Firstly, in normal mice, the NMDA channel blocker MK 801 (0.1-1.6 mg/kg) caused a biphasic stimulation/depression of locomotor activity, whereas the competitive NMDA antagonists CGP 40116 (0.25-8 mg/kg) and CPP (0.2-20 mg/kg), and the NMDA glycine site antagonist HA 966 (0.4-10 mg/kg) inhibited locomotion monophasically. These compounds caused varying degrees of muscle weakness and impairment of posture and gait, whilst the AMPA receptor blocker NBQX (0.2-25 mg/kg) had no significant effect on unconditioned mouse motor behaviour. None of the antagonists reversed reserpine-induced akinesia by themselves, but they all potentiated the locomotor movements induced by 30 mg/kg SKF 38393. Movements remained fluent with low doses of CPP, HA 966 and NBQX, but became ataxic with MK 801 and CGP 40116, with sedation prevailing at high doses of all the antagonists, as in normal mice. CPP and NBQX also combined synergistically with SKF 38393 to promote tonic convulsions. By contrast, RU 24213-induced locomotion was dose-dependently depressed by MK 801, CGP 40116 and HA 966, but was unaffected by CPP or NBQX. These differential effects of NMDA and AMPA antagonists on D1 and D2 motor responding in the monoamine-depleted mouse are discussed in terms of possible mechanisms and sites of action within the brain, and the implications for their putative use as adjuvants to L-dopa in antiparkinson therapy. Topics: 2-Amino-5-phosphonovalerate; 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Dizocilpine Maleate; Dopamine Agonists; Male; Mice; Mice, Inbred Strains; Motor Activity; Phenethylamines; Piperazines; Pyrrolidinones; Quinoxalines; Receptors, AMPA; Receptors, Dopamine D1; Receptors, Dopamine D2; Receptors, N-Methyl-D-Aspartate; Reserpine | 1994 |
Glutamate-dopamine interactions in the production of pilocarpine motor seizures in the mouse.
An assortment of glutamate antagonists with differing selectivities for NMDA and AMPA-type glutamate receptors, were tested for their effects in the mouse pilocarpine model of complex partial seizures. MK 801 (0.1-0.8 mg/kg) and high doses of HA 966 (50 mg/kg) were proconvulsant, whilst CGP 40116 (1-8 mg/kg) and low doses of HA 966 (0.4-10 mg/kg) inhibited pilocarpine-induced convulsions. CPP (5-20 mg/kg) and NBQX (1-50 mg/kg) were without effect. The dopamine D1 agonist SKF 38393 (10 mg/kg) facilitated the convulsant effects of low-dose pilocarpine (100 mg/kg). MK 801 (0.1-0.2 mg/kg) and HA 966 (50 mg/kg) interacted synergistically with SKF 38393 to promote the proconvulsant effects of D1 stimulation, whilst CPP (10-20 mg/kg) and HA 966 (10 mg/kg) had the opposite effect. CGP 40116 and NBQX were without effect. These results show that the convulsant qualities of MK 801 and SKF 38393, that have been detected in animal models of Parkinson's disease, can be reproduced in the pilocarpine model of epilepsy. Whilst the glutamate antagonists all interact synergistically with SKF 38393 to improve its antiparkinson activity, only MK 801 and high doses of HA 966 similarly potentiate the convulsions associated with D1 stimulation. An appropriate mixture of a glutamate antagonist and a D1 agonist could theoretically be used beneficially in the treatment of Parkinson's disease, without causing epilepsy as a side effect. Topics: 2-Amino-5-phosphonovalerate; 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine; Animals; Dizocilpine Maleate; Dopamine Agents; Excitatory Amino Acid Antagonists; Glutamic Acid; Male; Mice; Mice, Inbred Strains; Pilocarpine; Piperazines; Pyrrolidinones; Quinoxalines; Receptors, AMPA; Receptors, Dopamine D1; Receptors, N-Methyl-D-Aspartate; Seizures | 1993 |
Diazepam dependence prevented by glutamate antagonists.
Long-term treatment leads to tolerance to and dependence on benzodiazepines. Abrupt termination of benzodiazepine administration triggers the expression of signs of dependence. Mice withdrawn from chronic treatment with diazepam showed a time-related evolution of anxiety, muscle rigidity, and seizures between days 4 and 21 after treatment discontinuation. A period between withdrawal days 1 and 3 was symptom-free. Surprisingly, during this "silent phase" the susceptibility of mice to alpha-amino-3-hydroxy-5-tert-butyl-4-isoxazolepropionate (ATPA) and kainate seizures and the magnitude of monosynaptic reflexes mediated by non-N-methyl-D-aspartate (NMDA) mechanisms were enhanced. In apparent contrast, the "active phase", between withdrawal days 4 and 21, was characterized by increased susceptibility to NMDA seizures and enhanced magnitude of polysynaptic reflexes, which are NMDA dependent. Treatment of mice with alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonists 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3-benzodiazepine (GYKI 52466) or 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline but not with the NMDA antagonist 3-[(+/-)-2-carboxypiperazin-4-yl]-propyl-1-phosphonate (CPP) during the silent phase prevented signs of dependence. In contrast, treatment with CPP but not with GYKI 52466 during the active phase prevented the symptoms. The development of tolerance to and dependence on diazepam was prevented by concurrent treatment of mice with CPP but was not prevented by GYKI 52466. These data indicate that NMDA-dependent mechanisms contribute to the development of tolerance to diazepam and to the expression of signs of dependence in mice after termination of long-term treatment with diazepam. Nevertheless, the non-NMDA-mediated silent phase is essential for triggering the symptoms. Therefore, AMPA antagonists may offer a therapeutic approach for preventing dependence on benzodiazepines that is an alternative to NMDA antagonism. Topics: Animals; Anti-Anxiety Agents; Benzodiazepines; Diazepam; Drug Tolerance; Electroencephalography; Electromyography; Excitatory Amino Acid Antagonists; Male; Mice; Mice, Inbred Strains; Motor Activity; Muscle Tonus; Piperazines; Quinoxalines; Seizures; Substance Withdrawal Syndrome; Substance-Related Disorders; Time Factors | 1993 |
Excitatory amino acid receptor-stimulated phosphoinositide turnover in primary cerebrocortical cultures.
1. Characterization of excitatory amino acid-induced accumulation of [3H]-phosphoinositides was carried out in primary cerebrocortical cultures isolated from foetal rats. 2. All of the excitatory amino acid receptor agonists examined caused concentration-dependent enhancement of phosphoinositide (PI) formation. The most potent excitatory amino acid receptor agonists were quisqualate, (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD), ibotenate and glutamate with mean EC50 values of 0.9 +/- 0.4 microM, 15 +/- 5 microM, 15 +/- 3 microM and 41 +/- 8 microM respectively. 3. The selective ionotropic receptor antagonists kynurenic acid (1 mM), 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX, 10 microM) and (+/-)-4-(3-phosphonopropyl)-2 piperazinecarboxylic acid (CPP, 100 microM), failed to block responses to quisqualate, (1S,3R)-ACPD or glutamate. D,L-2-Amino-3-phosphonopropionate (D,L-AP3) did not block 1S,3R-ACPD or quisqualate-induced PI turnover, but had an additive effect with quisqualate or (1S,3R)-ACPD. 4. Exposure of cultures to agonists in the absence of added extracellular calcium reduced the maximal quisqualate response by approximately 45%, revealing a two-component concentration-response curve. Concentration-response curves to ibotenate and glutamate became flattened by omission of extracellular calcium, whereas (1S,3R)-ACPD-stimulated PI turnover was unaffected. 5. Pretreatment of cultures with pertussis toxin markedly inhibited PI responses evoked by (1S,3R)-ACPD. 6. These results suggest that excitatory amino acid-stimulated PI turnover in cerebrocortical cultures is independent of ionotropic receptor activation and is mediated via specific G-protein-linked metabotropic receptors. The partial dependence of the responses to quisqualate, ibotenate and glutamate on the presence of extracellular calcium suggests that the effects of these agonists may be mediated by more than one receptor subtype. Topics: Animals; Calcium; Cells, Cultured; Cerebral Cortex; Cycloleucine; Female; GTP-Binding Proteins; Kynurenic Acid; Pertussis Toxin; Phosphatidylinositols; Piperazines; Pregnancy; Quinoxalines; Quisqualic Acid; Rats; Receptors, Amino Acid; Receptors, Glutamate; Receptors, N-Methyl-D-Aspartate; Virulence Factors, Bordetella | 1993 |
NBQX (6-nitro-sulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxy-piperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats.
Degeneration of dopaminergic nigrostriatal neurons in primate models of Parkinson's disease (PD) leads to an overactivity of excitatory glutamatergic projections from the subthalamic nucleus (STN) to the output nuclei of the basal ganglia resulting in rigidity and akinesia. The selective alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) antagonist 6-nitro-sulfamoyl-benzo-quinoxaline-dione (NBQX) and the competitive N-methyl-D-aspartate (NMDA) antagonist 3-carboxy-piperazin-propyl phosphonic acid (CPP) ameliorate parkinsonian symptomatology when co-administered with threshold doses of L-DOPA in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated common marmosets and induce rotations in rats with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra (SN). Here we report that in the 6-OHDA-lesioned rat NBQX and CPP induce contralateral rotations when combined with threshold doses of the direct dopamine agonists lisuride or apomorphine. AMPA antagonists and competitive NMDA antagonists may therefore be suitable as adjuvants for the treatment of PD. Topics: alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Amphetamine; Animals; Apomorphine; Dopamine Agents; Drug Synergism; Ibotenic Acid; Lisuride; Male; Neurons; Oxidopamine; Parkinson Disease, Secondary; Piperazines; Quinoxalines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Stereotyped Behavior; Substantia Nigra; Sympathectomy, Chemical | 1992 |
Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-dopa in models of Parkinson's disease.
Degeneration of dopaminergic nigrostriatal neurons in Parkinson's disease results in an overactivity of excitatory glutamatergic projections from the subthalamic nucleus to the output nuclei of the basal ganglia resulting in rigidity and akinesia. In theory pharmacological blockade of these overactive systems should improve parkinsonian symptomatology. The selective AMPA-antagonist NBQX and the competitive NMDA-antagonist CPP are not effective in animal models of Parkinson's disease when given alone but ameliorate parkinsonian symptomatology and stimulate locomotor activity when co-administered with a threshold dose of L-Dopa. These synergistic effects are seen in the MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmoset and the rat with unilateral 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra. Therefore competitive NMDA and non-NMDA antagonists may offer a new therapeutic strategy for the treatment of Parkinson's disease. Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Analysis of Variance; Animals; Callithrix; Disease Models, Animal; Drug Synergism; Ibotenic Acid; Levodopa; Male; Motor Activity; Oxidopamine; Parkinson Disease, Secondary; Piperazines; Quinoxalines; Rats; Rats, Inbred Strains; Receptors, N-Methyl-D-Aspartate; Substantia Nigra | 1991 |