2-3-dinor-6-ketoprostaglandin-f1alpha and nimesulide

2-3-dinor-6-ketoprostaglandin-f1alpha has been researched along with nimesulide* in 2 studies

Trials

1 trial(s) available for 2-3-dinor-6-ketoprostaglandin-f1alpha and nimesulide

ArticleYear
Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis.
    Circulation, 2000, Aug-22, Volume: 102, Issue:8

    The formation of prostacyclin (PGI(2)), thromboxane (TX) A(2), and isoprostanes is markedly enhanced in atherosclerosis. We examined the relative contribution of cyclooxygenase (COX)-1 and -2 to the generation of these eicosanoids in patients with atherosclerosis.. The study population consisted of 42 patients with atherosclerosis who were undergoing surgical revascularization. COX-2 mRNA was detected in areas of atherosclerosis but not in normal blood vessel walls, and there was evidence of COX-1 induction. The use of immunohistochemical studies localized the COX-2 to proliferating vascular smooth muscle cells and macrophages. Twenty-four patients who did not previously receive aspirin were randomized to receive either no treatment or nimesulide at 24 hours before surgery and then for 3 days. Eighteen patients who were receiving aspirin were continued on a protocol of either aspirin alone or a combination of aspirin and nimesulide. Urinary levels of 11-dehydro-TXB(2) and 2,3-dinor-6-keto-PGF(1alpha), metabolites of TXA(2) and PGI(2), respectively, were elevated in patients with atherosclerosis compared with normal subjects (3211+/-533 versus 679+/-63 pg/mg creatinine, P<0.001; 594+/-156 versus 130+/-22 pg/mg creatinine, P<0.05, respectively), as was the level of the isoprostane 8-iso-PGF(2alpha). Nimesulide reduced 2, 3-dinor-6-keto-PGF(1alpha) excretion by 46+/-5% (378.3+/-103 to 167+/-37 pg/mg creatinine, P<0.01) preoperatively and blunted the increase after surgery. Nimesulide had no significant effect on 11-dehydro-TXB(2) before (2678+/-694 to 2110+/-282 pg/mg creatinine) or after surgery. The levels of both products were lower in patients who were taking aspirin, and no further reduction was seen with the addition of nimesulide. None of the treatments influenced urinary 8-iso-PGF(2alpha) excretion.. Both COX-1 and -2 are expressed and contribute to the increase in PGI(2) in patients with atherosclerosis, whereas TXA(2) is generated by COX-1.

    Topics: 6-Ketoprostaglandin F1 alpha; Adult; Aged; Anti-Inflammatory Agents, Non-Steroidal; Arteriosclerosis; Aspirin; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Dinoprost; Epoprostenol; F2-Isoprostanes; Female; Humans; Isoenzymes; Macrophages; Male; Membrane Proteins; Microscopy, Fluorescence; Muscle, Smooth, Vascular; Prostaglandin-Endoperoxide Synthases; Sulfonamides; Thromboxane A2; Thromboxane B2

2000

Other Studies

1 other study(ies) available for 2-3-dinor-6-ketoprostaglandin-f1alpha and nimesulide

ArticleYear
Acceleration of atherogenesis by COX-1-dependent prostanoid formation in low density lipoprotein receptor knockout mice.
    Proceedings of the National Academy of Sciences of the United States of America, 2001, Mar-13, Volume: 98, Issue:6

    The cyclooxygenase (COX) product, prostacyclin (PGI(2)), inhibits platelet activation and vascular smooth-muscle cell migration and proliferation. Biochemically selective inhibition of COX-2 reduces PGI(2) biosynthesis substantially in humans. Because deletion of the PGI(2) receptor accelerates atherogenesis in the fat-fed low density lipoprotein receptor knockout mouse, we wished to determine whether selective inhibition of COX-2 would accelerate atherogenesis in this model. To address this hypothesis, we used dosing with nimesulide, which inhibited COX-2 ex vivo, depressed urinary 2,3 dinor 6-keto PGF(1alpha) by approximately 60% but had no effect on thromboxane formation by platelets, which only express COX-1. By contrast, the isoform nonspecific inhibitor, indomethacin, suppressed platelet function and thromboxane formation ex vivo and in vivo, coincident with effects on PGI(2) biosynthesis indistinguishable from nimesulide. Indomethacin reduced the extent of atherosclerosis by 55 +/- 4%, whereas nimesulide failed to increase the rate of atherogenesis. Despite their divergent effects on atherogenesis, both drugs depressed two indices of systemic inflammation, soluble intracellular adhesion molecule-1, and monocyte chemoattractant protein-1 to a similar but incomplete degree. Neither drug altered serum lipids and the marked increase in vascular expression of COX-2 during atherogenesis. Accelerated progression of atherosclerosis is unlikely during chronic intake of specific COX-2 inhibitors. Furthermore, evidence that COX-1-derived prostanoids contribute to atherogenesis suggests that controlled evaluation of the effects of nonsteroidal anti-inflammatory drugs and/or aspirin on plaque progression in humans is timely.

    Topics: 6-Ketoprostaglandin F1 alpha; Animals; Coronary Artery Disease; Cyclooxygenase 1; Cyclooxygenase 2; Cyclooxygenase 2 Inhibitors; Cyclooxygenase Inhibitors; Epoprostenol; Female; Indomethacin; Isoenzymes; Male; Membrane Proteins; Mice; Mice, Inbred C57BL; Mice, Knockout; Prostaglandin-Endoperoxide Synthases; Receptors, LDL; Sulfonamides; Thromboxane B2

2001