2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone has been researched along with nad in 4 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 3 (75.00) | 29.6817 |
2010's | 1 (25.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Casida, JE; Schuler, F | 1 |
Brière, JJ; Chretien, D; Rustin, P; Schlemmer, D | 1 |
Li, LS; Rubin, H; Teh, JS; Weinstein, E; Yano, T | 1 |
Ohnishi, ST; Ohnishi, T; Ohta, K; Shinzawa-Itoh, K; Yoshikawa, S | 1 |
4 other study(ies) available for 2,3-dimethoxy-5-methyl-6-decyl-1,4-benzoquinone and nad
Article | Year |
---|---|
Functional coupling of PSST and ND1 subunits in NADH:ubiquinone oxidoreductase established by photoaffinity labeling.
Topics: 1-Methyl-4-phenylpyridinium; Binding Sites; Electron Transport Complex I; Enzyme Inhibitors; Enzyme Stability; Hot Temperature; Molecular Structure; Multienzyme Complexes; NAD; NADH, NADPH Oxidoreductases; Photoaffinity Labels; Polyenes; Pyridazines; Rotenone; Structure-Activity Relationship; Tritium; Ubiquinone | 2001 |
Quinone analogues regulate mitochondrial substrate competitive oxidation.
Topics: Animals; Benzoquinones; Binding, Competitive; Cell Respiration; Cells, Cultured; Dose-Response Relationship, Drug; Homeostasis; Mice; Mice, Inbred C57BL; Mitochondria, Liver; NAD; Oxidation-Reduction; Oxygen; Oxygen Consumption; Quinones; Substrate Specificity; Ubiquinone; Vitamin K 3 | 2004 |
Steady-state kinetics and inhibitory action of antitubercular phenothiazines on mycobacterium tuberculosis type-II NADH-menaquinone oxidoreductase (NDH-2).
Topics: Antitubercular Agents; Binding, Competitive; Enzyme Inhibitors; Flavin-Adenine Dinucleotide; Kinetics; Mycobacterium tuberculosis; NAD; Phenothiazines; Quinone Reductases; Quinones; Ubiquinone | 2006 |
New insights into the superoxide generation sites in bovine heart NADH-ubiquinone oxidoreductase (Complex I): the significance of protein-associated ubiquinone and the dynamic shifting of generation sites between semiflavin and semiquinone radicals.
Topics: Animals; Benzoquinones; Binding Sites; Biocatalysis; Cattle; Electron Spin Resonance Spectroscopy; Electron Transport; Electron Transport Complex I; Flavins; Free Radicals; Hydrogen Peroxide; Mitochondria, Heart; Myocardium; NAD; Oxidation-Reduction; Pyridines; Quinones; Rotenone; Superoxides; Ubiquinone; Uncoupling Agents | 2010 |