2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate and sinigrin

2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate has been researched along with sinigrin* in 1 studies

Other Studies

1 other study(ies) available for 2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate and sinigrin

ArticleYear
Induction of quinone reductase by allylisothiocyanate (AITC) and the N-acetylcysteine conjugate of AITC in Hepa1c1c7 mouse hepatoma cells.
    BioFactors (Oxford, England), 2006, Volume: 26, Issue:1

    Cruciferous vegetables contain a series of relatively unique secondary metabolites of amino acids, called glucosinolates, from which isothiocyanates (ITC) can be generated. While glucosinolates are not thought to be bioactive directly, ITC appear to have anticarcinogenic activity. Sinigrin, the predominant aliphatic glucosinolate in cruciferous vegetables, is hydrolyzed to yield allylisothiocyanate (AITC), which, following absorption and metabolism in humans, is excreted in the urine as an N-acetyl-cysteine (NAC) conjugate. AITC possesses numerous biochemical and physiological activities. This study examined the induction of quinine reductase (QR) by AITC and synthetic AITC-NAC in Hepa1c1c7 murine hepatoma cells. AITC and AITC-NAC inhibited cell growth in a dose-dependent manner. The induction of QR activity and QR mRNA expression was dose-responsive over a range of 0.1-2.5 microM. AITC caused 2.0- and 3.1-fold inductions of QR with 1- and 2-microM treatments, respectively. By comparison, 1 and 2 microM AITC-NAC caused 2.9- and 3.7-fold inductions of QR, respectively. Considering the potential of ITC to prevent cancer, these results provide a basis for the use of NAC-ITC conjugates as chemopreventive agents.

    Topics: Acetylcysteine; Animals; Anticarcinogenic Agents; Cell Division; Cell Line, Tumor; Enzyme Induction; Gene Expression; Glucosinolates; Isothiocyanates; Liver Neoplasms, Experimental; Mice; NAD(P)H Dehydrogenase (Quinone); RNA, Messenger; Vegetables

2006