2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate and isothiocyanic-acid

2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate has been researched along with isothiocyanic-acid* in 3 studies

Other Studies

3 other study(ies) available for 2-3-4-tri-o-acetylarabinopyranosyl-isothiocyanate and isothiocyanic-acid

ArticleYear
Effect of allyl isothiocyanate on oxidative stress in COPD via the AhR / CYP1A1 and Nrf2 / NQO1 pathways and the underlying mechanism.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2023, Volume: 114

    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death globally. Oxidative stress affects various molecular mechanisms and is the main driving factor of COPD. Ally isothiocyanate (AITC) is an effective component of Semen Sinapis Albae, which has favorable effects for the treatment of COPD, but its mechanism has not been fully elucidated.. This study aimed to elucidate the antioxidant effect of AITC on COPD and its molecular mechanism, and preliminarily determine the role of AhR in the progression of COPD.. The COPD rat model was established by smoking combined with intratracheal instillation of lipopolysaccharide. Different doses of AITC, positive control drug acetylcysteine, AhR inhibitor alpha-naphthoflavone, and agonist beta-naphthoflavone were administered by gavage. Human bronchial epithelial cells induced by cigarette smoke extract (CSE) were used in an in vitro model to explore the molecular mechanisms of AITC.. The effects of AITC on lung function and oxidative stress in rats were evaluated in vivo using the respiratory function test, white blood cell count, enzyme-linked immunosorbent assay, and histological staining. The changes in protein expression in the lung tissue were detected by immunohistochemistry and Western blotting. RT-PCR, western blotting, and immunofluorescence were used to explore the molecular mechanisms of AITC. Enzyme-linked immunosorbent assay, reactive oxygen species probing, and flow cytometry were used to determine the antioxidant effect of AITC.. AITC can improve the lung function of rats with COPD, restore lung tissue structure, improve oxidative stress, reduce inflammation, and inhibit lung cell apoptosis. AITC reversed the upregulation of AhR and CYP1A1 and the down-regulation of Nrf2 and NQO1 in the lung tissues of rats with COPD. CSE stimulation can increase the expressions of AhR and CYP1A1 and decrease the expressions of Nrf2 and NQO1 in 16HBE cells, leading to severe oxidative stress and inflammatory response and, ultimately, apoptosis. AITC inhibited AhR and CYP1A1 expressions, induced Nrf2 and NQO1 expressions, promoted Nrf2 nuclear translocation, and improved CSE-induced toxicological effects.. AITC may improve lung oxidative stress by inhibiting the AhR / CYP1A1 and activating the Nrf2 / NQO1 pathways, thereby delaying the pathological progression of COPD.

    Topics: Animals; Antioxidants; Cytochrome P-450 CYP1A1; Humans; Isothiocyanates; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Oxidative Stress; Pulmonary Disease, Chronic Obstructive; Rats; Signal Transduction

2023
Allyl-, Butyl- and Phenylethyl-Isothiocyanate Modulate Akt-mTOR and Cyclin-CDK Signaling in Gemcitabine- and Cisplatin-Resistant Bladder Cancer Cell Lines.
    International journal of molecular sciences, 2022, Sep-20, Volume: 23, Issue:19

    Combined cisplatin-gemcitabine treatment causes rapid resistance development in patients with advanced urothelial carcinoma. The present study investigated the potential of the natural isothiocyanates (ITCs) allyl-isothiocyanate (AITC), butyl-isothiocyanate (BITC), and phenylethyl-isothiocyanate (PEITC) to suppress growth and proliferation of gemcitabine- and cisplatin-resistant bladder cancer cells lines. Sensitive and gemcitabine- and cisplatin-resistant RT112, T24, and TCCSUP cells were treated with the ITCs, and tumor cell growth, proliferation, and clone formation were evaluated. Apoptosis induction and cell cycle progression were investigated as well. The molecular mode of action was investigated by evaluating cell cycle-regulating proteins (cyclin-dependent kinases (CDKs) and cyclins A and B) and the mechanistic target of the rapamycin (mTOR)-AKT signaling pathway. The ITCs significantly inhibited growth, proliferation and clone formation of all tumor cell lines (sensitive and resistant). Cells were arrested in the G2/M phase, independent of the type of resistance. Alterations of both the CDK-cyclin axis and the Akt-mTOR signaling pathway were observed in AITC-treated T24 cells with minor effects on apoptosis induction. In contrast, AITC de-activated Akt-mTOR signaling and induced apoptosis in RT112 cells, with only minor effects on CDK expression. It is concluded that AITC, BITC, and PEITC exert tumor-suppressive properties on cisplatin- and gemcitabine-resistant bladder cancer cells, whereby the molecular action may differ among the cell lines. The integration of these ITCs into the gemcitabine-/cisplatin-based treatment regimen might optimize bladder cancer therapy.

    Topics: Apoptosis; Carcinoma, Transitional Cell; Cell Line, Tumor; Cisplatin; Cyclin-Dependent Kinases; Cyclins; Deoxycytidine; Gemcitabine; Humans; Isothiocyanates; Proto-Oncogene Proteins c-akt; Signal Transduction; Sirolimus; TOR Serine-Threonine Kinases; Urinary Bladder Neoplasms

2022
Effects of Four Isothiocyanates in Dissolved and Gaseous States on the Growth and Aflatoxin Production of
    Toxins, 2022, 11-02, Volume: 14, Issue:11

    Aflatoxins (AFs), a class of toxins produced by certain species of the genus

    Topics: Aflatoxin B1; Aflatoxins; Aspergillus flavus; Gases; Humans; Isothiocyanates

2022