2,2-bis(bromomethyl)-1,3-propanediol has been researched along with scopoletin in 2 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (50.00) | 29.6817 |
2010's | 1 (50.00) | 24.3611 |
2020's | 0 (0.00) | 2.80 |
Authors | Studies |
---|---|
Gupta, M; Krischke, M; Loeffler, C; Mueller, MJ; Roitsch, T; Sinha, AK; Steffan, B; Thoma, I | 1 |
Abdelmohsen, UR; Engelke, T; Griebel, T; Grosskinsky, DK; Naseem, M; Novák, O; Pfeifhofer, H; Plickert, N; Roitsch, T; Simon, U; Strnad, M; van der Graaff, E; Zeier, J | 1 |
2 other study(ies) available for 2,2-bis(bromomethyl)-1,3-propanediol and scopoletin
Article | Year |
---|---|
Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants.
Topics: Arabidopsis; beta-Fructofuranosidase; Botrytis; Cells, Cultured; Cyclopentanes; Enzyme Activation; Enzyme Induction; Gene Expression Regulation, Plant; Glutathione Transferase; Glycoside Hydrolases; Immunity, Innate; Isoprostanes; Mitogen-Activated Protein Kinases; Molecular Structure; Nicotiana; Oxylipins; Peroxides; Phenylalanine Ammonia-Lyase; Phytoalexins; Plant Extracts; Plants; Reactive Oxygen Species; Scopoletin; Sesquiterpenes; Solanum lycopersicum; Terpenes; Transcriptional Activation | 2003 |
Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling.
Topics: Anti-Infective Agents; beta-Fructofuranosidase; Cyclopentanes; Cytokinins; Disease Resistance; Host-Pathogen Interactions; Nicotiana; Oxylipins; Phytoalexins; Plant Diseases; Plant Immunity; Plant Leaves; Plants, Genetically Modified; Pseudomonas syringae; Salicylic Acid; Scopoletin; Sesquiterpenes | 2011 |