2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and gallocatechol

2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid has been researched along with gallocatechol* in 3 studies

Other Studies

3 other study(ies) available for 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and gallocatechol

ArticleYear
Synergistic Effects of Potentilla fruticosa L. Leaves Combined with Green Tea Polyphenols in a Variety of Oxidation Systems.
    Journal of food science, 2016, Volume: 81, Issue:5

    Potentilla fruticosa L. leaves are widely used as tea in China, with many commercial "Jinlaomei" teas available in markets. It has been confirmed to possess significant antioxidant activity than that of butylated hydroxytoluene. In this study, the synergistic effects of P. fruticosa leaves extracts (PFE) combined with green tea polyphenols (GTP) were studied to elucidate their use in combination and find specific combinations with least concentrations that enhance the antioxidant activity. Isobolographic analysis indicated that the combination of PFE and GTP demonstrated extensive synergism (22/28 of the tests showed significant synergy) with 3:1 (PFE:GTP) exhibiting the best synergistic effect. Chemical compositions and content of 7 phenolic compounds in PFE, GTP, and their mixtures were evaluated by reverse-phase-high-performance liquid chromatography. While chemical composition did not seem to change after the combination, as no new peaks appeared in the chromatogram, and no existing peaks disappeared. However, the content of (+)-catechin, (-)-epigallocatechin (EGC), and , (-)-epigallocatechin gallate (EGCG) changed. Besides, antioxidant interactions of extracts and compounds were evaluated, EGC with hyperoside exhibited the greatest synergistic effect and the combination of 3:1 exhibited the strongest synergism (DPPH γ = 0.86, ABTS γ = 1.12, FRAP γ = 1.16). Therefore, interaction of phytochemicals may be one reason for the synergistic effects in PFE + GTP, with EGC + hyperoside likely playing an important role. This report provides a theoretical basis for the concomitant use of P. fruticosa blended with GTP, which can be effectively used as a compounded tea, dietary supplements, and substituent of synthetic antioxidant.

    Topics: Antioxidants; Benzothiazoles; Biphenyl Compounds; Camellia sinensis; Catechin; China; Chromatography, High Pressure Liquid; Dietary Supplements; Drug Synergism; Oxidation-Reduction; Phenols; Picrates; Plant Extracts; Plant Leaves; Polyphenols; Potentilla; Sulfonic Acids; Tea

2016
Enzymatic improvement in the polyphenol extractability and antioxidant activity of green tea extracts.
    Bioscience, biotechnology, and biochemistry, 2013, Volume: 77, Issue:1

    This study describes increases in extraction efficiency and the bioconversion of catechins after treatment with several commercial enzymes. Tannase was also used to improve the anti-radical activities of green tea extracts. Enzymatic treatment with various commercial enzymes was introduced to improve the extraction efficiency of polyphenols. The total polyphenol, flavonoid, and catechin contents and the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity of the green tea extract treated with Viscozyme (VG) were significantly higher than those treated with other commercial enzymatic extractions (p<0.05). More than 95% of the epigallocatechingallate (EGCG) and of the epicatechingallate (ECG) was hydrolyzed to epigallocatechin (EGC) and to epicatechin (EC) in successive 20 min treatments with Viscozyme and tannase (TG). Due to its hydrolytic activity, treatment involving tannase resulted in a significant release of gallic acid (GA), EGC, and EC, leading to greater radical scavenging activities. Regarding the IC(50) values of the DPPH and 2,2-azino-di-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, the green tea extract treated with TG showed values of 131.23 and 28.83 µg/mL, VG showed values of 224.70 and 32.54 µg/mL, and normal green tea extract (NG) showed values of 241.11 and 66.27 µg/mL, respectively. These results indicate that successive treatment with Viscozyme and tannase improves the extraction efficiency of polyphenols and increases radical scavenging activities.

    Topics: Antioxidants; Benzothiazoles; Biphenyl Compounds; Carboxylic Ester Hydrolases; Catechin; Cellulases; Endo-1,4-beta Xylanases; Fungal Proteins; Gallic Acid; Glycoside Hydrolases; Picrates; Plant Extracts; Plant Leaves; Sulfonic Acids; Tea; Thiazoles

2013
Effect of polymerization on antioxidant and xanthine oxidase inhibitory potential of sea buckthorn (H. rhamnoides) proanthocyanidins.
    Journal of food science, 2012, Volume: 77, Issue:10

    Inhibitory potential of sea buckthorn (Hippophae rhamnoides L) seed proanthocyanidins against oxidative stress and xanthine oxidase activity was evaluated. Composition of antioxidant proanthocyanidins was profiled by analyzing the cleavage products obtained by the acid catalyzed hydrolysis in the presence of phloroglucinol. Catechin, epicatechin, gallocatechin, and epigallocatechin were found as the extension and terminal subunits of proanthocyanidins with an average degree of polymerization (ADP) of 14.7. Seed proanthocyanidins showed considerably high antioxidant and xanthine oxidase inhibitory potentials. Antioxidant and xanthine oxidase inhibitory capacity evaluation of proanthocyanidin fractions with varying ADP showed that proanthocyanidins with lower molecular size were more effective as superoxide anion (ADP ≤ 4.2) and hydroxyl radical (ADP ≤ 5.9) scavengers and xanthine oxidase (ADP ≤ 3.1) inhibitors. ADP of the studied proanthocyanidin fractions did not show significant influence on their DPPH and ABTS radical scavenging and ferric reduction capacities.

    Topics: Antioxidants; Benzothiazoles; Catechin; Chelating Agents; Free Radical Scavengers; Hippophae; Hydroxyl Radical; Iron; Polymerization; Proanthocyanidins; Seeds; Sulfonic Acids; Superoxides; Xanthine Oxidase

2012