2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and acetosyringone

2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid has been researched along with acetosyringone* in 3 studies

Other Studies

3 other study(ies) available for 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and acetosyringone

ArticleYear
Aflatoxin B₁ and M₁ Degradation by Lac2 from Pleurotus pulmonarius and Redox Mediators.
    Toxins, 2016, 08-23, Volume: 8, Issue:9

    Laccases (LCs) are multicopper oxidases that find application as versatile biocatalysts for the green bioremediation of environmental pollutants and xenobiotics. In this study we elucidate the degrading activity of Lac2 pure enzyme form Pleurotus pulmonarius towards aflatoxin B₁ (AFB₁) and M₁ (AFM₁). LC enzyme was purified using three chromatographic steps and identified as Lac2 through zymogram and LC-MS/MS. The degradation assays were performed in vitro at 25 °C for 72 h in buffer solution. AFB₁ degradation by Lac2 direct oxidation was 23%. Toxin degradation was also investigated in the presence of three redox mediators, (2,2'-azino-bis-[3-ethylbenzothiazoline-6-sulfonic acid]) (ABTS) and two naturally-occurring phenols, acetosyringone (AS) and syringaldehyde (SA). The direct effect of the enzyme and the mediated action of Lac2 with redox mediators univocally proved the correlation between Lac2 activity and aflatoxins degradation. The degradation of AFB₁ was enhanced by the addition of all mediators at 10 mM, with AS being the most effective (90% of degradation). AFM₁ was completely degraded by Lac2 with all mediators at 10 mM. The novelty of this study relies on the identification of a pure enzyme as capable of degrading AFB₁ and, for the first time, AFM₁, and on the evidence that the mechanism of an effective degradation occurs via the mediation of natural phenolic compounds. These results opened new perspective for Lac2 application in the food and feed supply chains as a biotransforming agent of AFB₁ and AFM₁.

    Topics: Acetophenones; Aflatoxin B1; Aflatoxin M1; Benzaldehydes; Benzothiazoles; Biodegradation, Environmental; Food Microbiology; Fungal Proteins; Laccase; Oxidation-Reduction; Pleurotus; Proteolysis; Substrate Specificity; Sulfonic Acids; Time Factors

2016
Phenolic compounds as enhancers in enzymatic and electrochemical oxidation of veratryl alcohol and lignins.
    Applied microbiology and biotechnology, 2011, Volume: 89, Issue:6

    Sixteen phenolic compounds, 14 of which naturally occurring, were compared to the synthetic 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and violuric acid (VA) in terms of their ability to act as mediators/enhancers in: (1) laccase oxidation of veratryl alcohol as a lignin model compound, and (2) electrochemical oxidation of kraft and flax lignins. HPLC analysis revealed that the syringyl-type phenols methyl syringate and acetosyringone were the most efficient natural enhancers in the laccase oxidation of veratryl alcohol. Both compounds, though far from the performance of ABTS were able to generate veratraldehyde in amount similar to that obtained with VA. By contrast, the best performing phenolic enhancers for the electrochemical oxidation of lignins were sinapinaldehyde, vanillin, acetovanillone, and syringic acid. Catalytic efficiencies close to those achieved with ABTS and VA were calculated for these phenolic compounds.

    Topics: Acetophenones; Benzothiazoles; Benzyl Alcohols; Chromatography, High Pressure Liquid; Electrochemical Techniques; Gallic Acid; Laccase; Lignin; Oxidation-Reduction; Phenols; Sulfonic Acids

2011
Laccase-catalyzed oxidation of oxybenzone in municipal wastewater primary effluent.
    Water research, 2011, Volume: 45, Issue:5

    Pharmaceuticals and personal care products (PPCPs) are now routinely detected in raw and treated municipal wastewater. Since conventional wastewater treatment processes are not particularly effective for PPCP removal, treated wastewater discharges are the main entry points for PPCPs into the environment, and eventually into our drinking water. This study investigates the use of laccase-catalyzed oxidation for removing low concentrations of PPCPs from municipal wastewater primary effluent. Oxybenzone was selected as a representative PPCP. Like many other PPCPs, it is not recognized directly by the laccase enzyme. Therefore, mediators were used to expand the oxidative range of laccase, and the efficacy of this laccase-mediator system in primary effluent was evaluated. Eight potential mediators were investigated, and 2,2'-Azino-bis(3-ethylbenzthiazoline-6sulphonic acid) diammonium salt (ABTS), a synthetic mediator, and acetosyringone (ACE), a natural mediator, provided the greatest oxybenzone removal efficiencies. An environmentally relevant concentration of oxybenzone (43.8 nM, 10 μg/L) in primary effluent was completely removed (below the detection limit) after two hours of treatment with ABTS, and 95% was removed after two hours of treatment with ACE. Several mediator/oxybenzone molar ratios were investigated at two different initial oxybenzone concentrations. Higher mediator/oxybenzone molar ratios were required at the lower (environmentally relevant) oxybenzone concentration, and ACE required higher molar ratios than ABTS to achieve comparable oxybenzone removal. Oxybenzone oxidation byproducts generated by the laccase-mediator system were characterized and compared to those generated during ozonation. Enzymatic treatment generated byproducts with higher mass to charge (m/z) ratios, likely due to oxidative coupling reactions. The results of this study suggest that, with further development, the laccase-mediator system has the potential to extend the treatment range of laccase to PPCPs not directly recognized by the enzyme, even in a primary effluent matrix.

    Topics: Acetophenones; Benzophenones; Benzothiazoles; Catalysis; Cities; Laccase; Oxidation-Reduction; Pharmaceutical Preparations; Reproducibility of Results; Sulfonic Acids; Waste Disposal, Fluid; Water Pollutants, Chemical; Water Purification; Water Supply

2011