2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid has been researched along with 4-hydroxybenzoic-acid* in 2 studies
2 other study(ies) available for 2-2--azino-di-(3-ethylbenzothiazoline)-6-sulfonic-acid and 4-hydroxybenzoic-acid
Article | Year |
---|---|
Antioxidant and anti-inflammatory activities of methanol extracts of Tremella fuciformis and its major phenolic acids.
Methanol extract subfractions of the edible white jelly mushroom (Tremella fuciformis), were assessed for the following antioxidant properties: ABTS(+) radical scavenging activity, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, and inhibitory activity of human low-density lipoprotein (LDL) oxidation. Among the subfractions tested, the chloroform subfraction exhibited the strongest antioxidant activity, with the highest total phenolic content (66.31 μg CAE/mg extract) and flavonoids content (5.12 μg QE/mg extract). The ABTS(+) radical scavenging activity of the chloroform subfraction was 7.89 μmol trolox/mg extract, which was the highest among all subfractions. This subfraction also showed the highest DPPH radical scavenging activity and inhibitory activity of LDL oxidation. In addition, the chloroform subfraction demonstrated anti-inflammatory activity through inhibition of nitric oxide production and inducible nitric oxide synthase expression in RAW 264.7 cells. Major phenolic acids from the mushroom extract were identified as 4-hydroxybenzoic acid (323 mg/kg dry weight of mushroom), gentisic acid (174 mg/kg dry weight of mushroom), and 4-coumaric acid (30 mg/kg dry weight of mushroom). Topics: Agaricales; Anti-Inflammatory Agents; Antioxidants; Basidiomycota; Benzothiazoles; Biological Products; Biphenyl Compounds; Cell Line; Coumaric Acids; Flavonoids; Gentisates; Humans; Inflammation; Lipoproteins, LDL; Nitric Oxide; Nitric Oxide Synthase Type II; Parabens; Phenols; Picrates; Propionates; Sulfonic Acids | 2014 |
TEAC antioxidant activity of 4-hydroxybenzoates.
The influence of pH, intrinsic electron donating capacity, and intrinsic hydrogen atom donating capacity on the antioxidant potential of series of hydroxy and fluorine substituted 4-hydroxybenzoates was investigated experimentally and also on the basis of computer calculations. The pH-dependent behavior of the compounds in the TEAC assay revealed different antioxidant behavior of the nondissociated monoanionic form and the deprotonated dianionic form of the 4-hydroxybenzoates. Upon deprotonation the radical scavenging ability of the 4-hydroxybenzoates increases significantly. For mechanistic comparison a series of fluorobenzoates was synthesized and included in the studies. The fluorine substituents were shown to affect the proton and electron donating abilities of 4-hydroxybenzoate in the same way as hydroxyl substituents. In contrast, the fluorine substituents influenced the TEAC value and the hydrogen atom donating capacity of 4-hydroxybenzoate in a way different from the hydroxyl moieties. Comparison of these experimental data to computer-calculated characteristics indicates that the antioxidant behavior of the monoanionic forms of the 4-hydroxybenzoates is not determined by the tendency of the molecule to donate an electron, but by its ability to donate a hydrogen atom. Altogether, the results explain qualitatively and quantitatively how the number and position of OH moieties affect the antioxidant behavior of 4-hydroxybenzoates. Topics: Antioxidants; Benzothiazoles; Chromans; Electrons; Fluorine; Free Radical Scavengers; Hydrogen; Hydrogen Bonding; Hydrogen-Ion Concentration; Hydroxylation; Indicators and Reagents; Parabens; Sulfonic Acids | 1999 |