2--hydroxychalcone has been researched along with xanthohumol* in 2 studies
2 other study(ies) available for 2--hydroxychalcone and xanthohumol
Article | Year |
---|---|
2-Hydroxychalcone and xanthohumol inhibit invasion of triple negative breast cancer cells.
Breast cancer is estimated as one of the most common causes of cancer death among women. In particular, triple negative breast cancers (TNBCs), which do not express the genes for estrogen/progesterone receptors (ER/PR) and human epidermal growth factor receptor 2 (HER2), have been associated with poor prognosis and metastasis. Chalcones, the biosynthetic precursors of flavonoids present in edible plants, exert cytotoxic and chemopreventive activities. Although mounting evidence suggests the anticancer properties of chalcones, limited information is available regarding the inhibitory effects of chalcones on the aggressiveness of breast cancer cells. The present study aimed to investigate the effects of chalcone and its derivatives on the growth and the invasiveness of TNBC cells. Here, we showed that treatment with chalcone, 2-hydroxychalcone, and xanthohumol for 24h inhibited the growth of MDA-MB-231 cells with IC50 values of 18.1, 4.6, and 6.7 μM, respectively. Similarly, Chalcone, 2-hydroxychalcone, and xanthohumol also exerted cytotoxicity in another TNBC cell line, Hs578T. Neohesperidin dihydrochalcone, 4-methoxychalcone, and hesperidin methylchalcone did not show the cytotoxicity on the MDA-MB-231 cells. Xanthohumol and 2-hydroxychalcone induced apoptosis by Bcl-2 downregulation. Importantly, 2-hydroxychalcone and xanthohumol exerted more potent inhibitory effects on the proliferation, MMP-9 expression and invasive phenotype of MDA-MB-231 than chalcone. These results suggest a potential application of these chalcones as anticancer agents that can alleviate malignant progression of TNBC. Topics: Animals; Antineoplastic Agents; Breast Neoplasms; Cell Line, Tumor; Cell Survival; Chalcones; Drug Screening Assays, Antitumor; Female; Flavonoids; Humans; Mice; Neoplasm Invasiveness; Propiophenones; Receptor, ErbB-2; Receptors, Estrogen; Receptors, Progesterone | 2013 |
Inhibition of peroxynitrite-mediated LDL oxidation by prenylated flavonoids: the alpha,beta-unsaturated keto functionality of 2'-hydroxychalcones as a novel antioxidant pharmacophore.
Prenylated 2'-hydroxychalcones and flavanones from the inflorescences of the female hop plant (Humulus lupulus) were shown to inhibit peroxynitrite-mediated oxidation of low-density lipoproteins (LDL) at low micromolar concentrations. LDL oxidation was induced by the peroxynitrite generator, 3-morpholinosydnonimine (SIN-1), and measured by the formation of conjugated dienes and thiobarbituric reactive substances. Human intake of prenylated chalcones and flavanones is mainly through beer, which contains up to 4 mg/L of these polyphenols. The two main oxidation products obtained by SIN-1 and peroxynitrite treatment of xanthohumol (XN), the principal prenylflavonoid of hops, were the aurone, auroxanthohumol (AUXN), and an endoperoxy derivative of XN, named endoperoxyxanthohumol (EPOX). In addition, the reaction produced smaller amounts of the nitro and nitroso derivatives of XN and EPOX. The formation of these nitrated products was enhanced in the presence of sodium bicarbonate (25 mM). SIN-1-induced formation of AUXN is considered to be a superoxide-mediated reaction, while the structure of EPOX points to a two electron oxidation reaction involving a Michael type addition with peroxynitrite as the nucleophile, followed by cyclization yielding a (1,2)-dioxepin-5-one ring structure. The flavanone isomer of XN, isoxanthohumol (IsoXN), unexpectedly showed a slight prooxidant effect instead of an inhibitory effect on LDL oxidation. Except for the formation of minor nitrated products, IsoXN remained largely unmodified upon treatment with SIN-1/peroxynitrite. Taken together, our results suggest that the alpha,beta-unsaturated keto functionality of chalcones is most reactive toward superoxide and peroxynitrite anions. Topics: Antioxidants; Bicarbonates; Chalcone; Chalcones; Chromatography, High Pressure Liquid; Flavonoids; Humans; Humulus; Lipid Metabolism; Lipid Peroxidation; Lipoproteins, LDL; Magnetic Resonance Spectroscopy; Molecular Structure; Molsidomine; Oxidation-Reduction; Peroxynitrous Acid; Propiophenones; Spectrophotometry | 2003 |