2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan has been researched along with rimcazole* in 17 studies
1 review(s) available for 2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan and rimcazole
Article | Year |
---|---|
[Possible role of sigma-receptors in the regulation of cough reflex, gastrointestinal and retinal function].
This paper provides an overview of our current understanding of the role of sigma-receptors in the regulation of cough, gastrointestinal and retinal function. Systemic administration of N-(+)-allylnormetazocine ((+)SKF-10,047), 1,2-di-(2-toyl)guanidine (DTG) or pentazocine markedly reduced the number of coughs in a dose-dependent manner. The antitussive effect of these sigma-receptor ligands was significantly reduced by pretreatment with haloperidol or rimcazol, a specific antagonist of sigma-receptors. Antitussive effects of dextromethorphan and noscapine were significantly and dose-dependently reduced by pretreatment with rimcazole. However, rimcazole did not have a significant effect on the antitussive effect of morphine. These results suggest that haloperidol-sensitive sigma-receptors may be involved in the antitussive mechanism of non-narcotic antitussive drugs. Selective sigma-receptor ligands such as (+)SKF-10,047, DTG and (+)pentazocine elicit a potent protection against gastric and duodenal ulcers. Ulcerprotective activity of sigma-receptor ligands may be related to their stimulating effect on bicarbonate secretion through interaction with sigma-receptors in the gastrointestinal mucosa. Activation of sigma-receptors in retina protect retinal cells against glutamate-induced neurotoxicity. It is possible that sigma-receptor ligands may be useful as therapeutic drugs against retinal disease with ischemia-induced neuronal cell death such as retinal artery occlusion, diabetes mellitus or glaucoma. Topics: Animals; Anti-Ulcer Agents; Antitussive Agents; Carbazoles; Guanidines; Haloperidol; Humans; Ligands; Pentazocine; Phenazocine; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Retinal Diseases | 1999 |
16 other study(ies) available for 2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan and rimcazole
Article | Year |
---|---|
Receptor mechanisms and circuitry underlying NMDA antagonist neurotoxicity.
NMDA glutamate receptor antagonists are used in clinical anesthesia, and are being developed as therapeutic agents for preventing neurodegeneration in stroke, epilepsy, and brain trauma. However, the ability of these agents to produce neurotoxicity in adult rats and psychosis in adult humans compromises their clinical usefulness. In addition, an NMDA receptor hypofunction (NRHypo) state might play a role in neurodegenerative and psychotic disorders, like Alzheimer's disease and schizophrenia. Thus, understanding the mechanism underlying NRHypo-induced neurotoxicity and psychosis could have significant clinically relevant benefits. NRHypo neurotoxicity can be prevented by several classes of agents (e.g. antimuscarinics, non-NMDA glutamate antagonists, and alpha(2) adrenergic agonists) suggesting that the mechanism of neurotoxicity is complex. In the present study a series of experiments was undertaken to more definitively define the receptors and complex neural circuitry underlying NRHypo neurotoxicity. Injection of either the muscarinic antagonist scopolamine or the non-NMDA antagonist NBQX directly into the cortex prevented NRHypo neurotoxicity. Clonidine, an alpha(2) adrenergic agonist, protected against the neurotoxicity when injected into the basal forebrain. The combined injection of muscarinic and non-NMDA Glu agonists reproduced the neurotoxic reaction. Based on these and other results, we conclude that the mechanism is indirect, and involves a complex network disturbance, whereby blockade of NMDA receptors on inhibitory neurons in multiple subcortical brain regions, disinhibits glutamatergic and cholinergic projections to the cerebral cortex. Simultaneous excitotoxic stimulation of muscarinic (m(3)) and glutamate (AMPA/kainate) receptors on cerebrocortical neurons appears to be the proximal mechanism by which the neurotoxic and psychotomimetic effects of NRHypo are mediated. Topics: Adrenergic alpha-Agonists; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid; Animals; Carbachol; Carbazoles; Cerebral Cortex; Clonidine; Dizocilpine Maleate; Drug Interactions; Excitatory Amino Acid Antagonists; Female; Kainic Acid; Models, Neurological; Muscarinic Antagonists; Nerve Tissue Proteins; Neurons; Neuroprotective Agents; Phenazocine; Prosencephalon; Quinoxalines; Rats; Rats, Sprague-Dawley; Receptors, Glutamate; Receptors, Muscarinic; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Scopolamine | 2002 |
Modulation of dopamine uptake in rat nucleus accumbens: effect of specific dopamine receptor antagonists and sigma ligands.
The ability of dopamine (DA) antagonists and sigma receptor ligands to alter [(3)H]-DA uptake was examined using synaptosomes prepared from the nucleus accumbens of female rats. Pre-incubation with compounds having a high affinity for sigma (rimcazole, haloperidol, and spiperone) receptors produced dose dependent inhibition of (3)H-DA uptake. Sulpiride, a pure DA D(2) antagonist had no effect. In contrast, DA uptake was potentiated in response to (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine, a mixed sigma receptor antagonist and DA D(2) receptor agonist. Similarly, SKF-10,047, a selective sigma receptor agonist, and progesterone, a putative endogenous ligand for the sigma receptor, produced significant increases in (3)[H]-DA uptake. These data suggest a potential role for sigma and DA ligands in the regulation of DA uptake in the nucleus accumbens. Topics: Animals; Antipsychotic Agents; Carbazoles; Dopamine; Dopamine Antagonists; Dopamine Uptake Inhibitors; Dose-Response Relationship, Drug; Female; Haloperidol; Ligands; Neurons; Nomifensine; Nucleus Accumbens; Phenazocine; Progesterone; Radioligand Assay; Rats; Rats, Sprague-Dawley; Receptors, Dopamine; Receptors, sigma; Spiperone; Sulpiride; Synaptosomes; Tritium | 2001 |
Involvement of sigma-receptors in the increase in contraction of mouse vas deferens induced by exogenous ATP.
The effects of sigma-receptor ligands on the twitch contraction elicited by the exogenous application of adenosine 5'-triphosphate (ATP) in the unstimulated mouse vas deferens were studied. (-)-Pentazocine, 1,3-di(2-tolyl)guanidine(DTG) and two pairs of optical isomers of 3-(3-hydroxyphenyl)-N-(1-propyl)piperidine(3-PPP) and N-allylnormetazocine (SKF-10,047) potentiated the exogenous application of ATP-induced twitch-type contraction in a concentration-dependent manner, while (+)-pentazocine did not affect it. The order of potentiating ability was: (+)-3-PPP > (-)pentazocine > (-)-SKF-10,047> DTG > (-)-3-PPP > (+)-SKF-10,047. On the other hand, haloperidol and rimcazole, putataive sigma-receptor antagonists, suppressed this twitch contraction. In addition, these antagonists significantly blocked the (+)-3-PPP- and (-)-pentazocine-induced potentiation at concentrations which did not affect contractions per se. These findings indicate that the exogenous application of ATP-induced twitch contraction in the mouse vas deferens is regulated by sigma-receptors. In addition, the present ranking order suggests that the sigma-receptor potentiating the ATP-induced twitch contraction at post-junctional sites may differ from the sigma 1- and/or sigma 2-receptor subtypes. Topics: Adenosine Triphosphate; Analgesics, Opioid; Animals; Anticonvulsants; Antipsychotic Agents; Carbazoles; Dopamine Agonists; Dopamine Antagonists; Dose-Response Relationship, Drug; Drug Synergism; Guanidines; Haloperidol; Ligands; Male; Mice; Muscle Contraction; Muscle, Smooth; Pentazocine; Phenazocine; Piperidines; Receptors, sigma; Regression Analysis; Structure-Activity Relationship; Vas Deferens | 1996 |
(+)-N-allylnormetazocine enhances N-acetyltransferase activity and melatonin synthesis: preliminary evidence for a functional role of sigma receptors in the rat pineal gland.
In the present study, to evaluate the role that sigma receptors play in the physiology of the pineal gland, we assessed the effects of the sigma receptor ligand (+)-N-allylnormetazocine on the gland activity during either the day or the night. As compared to saline, (+)-N-allylnormetazocine enhanced the physiological increases in both pineal N-acetyltransferase (NAT) activity and melatonin content at night, but it did not affect the biosynthetic activity of the gland during the day. Moreover, (+)-N-allylnormetazocine potentiated the enhancement of NAT activity and pineal melatonin content induced by isoproterenol administration during the day. The nocturnal stimulation of pineal NAT activity and melatonin levels by (+)-N-allylnormetazocine was prevented by pretreatment with rimcazole, a specific sigma receptor antagonist. These results demonstrate that sigma receptor activation by (+)-N-allylnormetazocine is not able, by itself, to stimulate pineal melatonin production, whereas it potentiates the biosynthetic activity of the pineal gland when this is stimulated noradrenergically. Topics: Animals; Antipsychotic Agents; Arylamine N-Acetyltransferase; Carbazoles; Male; Melatonin; Phenazocine; Pineal Gland; Rats; Rats, Sprague-Dawley; Receptors, sigma | 1995 |
Pharmacological evidence for the involvement of sigma sites in DTG-induced contralateral circling in rats.
The central distribution of sigma sites labelled by di-o-tolylguanidine (DTG), a compound which has specific affinity for sigma sites, and its ability to produce postural movements, are consistent with the hypothesis that sigma sites may play a functional role in the regulation of movement. The aim of the present study was to evaluate the specificity of the circling behaviour induced by unilateral intranigral injection of DTG in rats. As previously described, DTG produced dose-dependent unilateral rotations (2.5-20 nmol/rat). A similar dose-dependent circling behaviour was observed with DMTG and (+) NANM (3-40 nmol/rat), compounds which bind to both sigma and PCP sites, and with haloperidol (3-20 nmol/rat) whereas raclopride and D,L-sulpiride did not elicit any circling (10 nmol/rat). DTG-induced circling after intranigral injection (10 nmol/rat) was decreased in a dose-dependent manner by rimcazole (20-40 mg/kg, i.p.), a selective ligand for sigma sites, and by BMY 14802 (3, 10, 30 mg/kg, i.p.), ifenprodil and eliprodil (1, 3, 10 mg/kg, i.p.), non-selective sigma ligands. In contrast, naloxone (1 mg/kg, s.c.) and CGS 19755 (1, 3, 10 mg/kg, i.p.) did not change the DTG-induced circling. Eliprodil failed to inhibit circling produced by compounds devoid of any affinity for sigma sites such as APV, dizocilpine or muscimol, indicating the specificity of the inhibition observed with eliprodil on the DTG-induced circling.(ABSTRACT TRUNCATED AT 250 WORDS) Topics: Animals; Anticonvulsants; Behavior, Animal; Carbazoles; Dose-Response Relationship, Drug; Guanidines; Haloperidol; Injections, Spinal; Male; Motor Activity; Phenazocine; Raclopride; Rats; Rats, Sprague-Dawley; Receptors, sigma; Salicylamides | 1995 |
Acute effects of sigma ligands on the extracellular DOPAC level in rat frontal cortex and striatum.
Acute administration of (+)-N-allylnormetazocine ((+)-SKF-10,047) and (+/-)-pentazocine, was found to increase the extracellular level of 3,4-dihydroxyphenylacetic acid (DOPAC), a major dopamine (DA) metabolite, in the rat frontal cortex. By contrast, these benzomorphan sigma ligands did not change the extracellular DOPAC level in the rat striatum. On the other hand, 1,3-di(2-tolyl)guanidine (DTG) increased the extracellular DOPAC level in the frontal cortex, while it decreased that level in the striatum. Another non-benzomorphan sigma ligand, (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3-PPP) decreased the extracellular DOPAC level in both frontal cortex and striatum. Moreover, the increase of the extracellular DOPAC level elicited by (+)-SKF-10,047 was significantly inhibited by rimcazole, a putative sigma antagonist, while the DTG-induced increment was not reversed by rimcazole. These findings indicated that the effects of sigma ligands on the mesocortical DA neurons differed from those on the nigrostriatal DA neurons. In addition, the effects of benzomorphan sigma ligands on the central DA neurons were different from those of non-benzomorphan sigma ligands. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Anticonvulsants; Antipsychotic Agents; Carbazoles; Corpus Striatum; Extracellular Space; Frontal Lobe; Guanidines; Kinetics; Ligands; Male; Microdialysis; Pentazocine; Phenazocine; Piperidines; Rats; Rats, Wistar; Receptors, sigma; Time Factors | 1995 |
Oocytes from Xenopus laevis contain an intrinsic sigma 2-like binding site.
In preparation for expression studies for rat brain sigma-binding sites, Xenopus oocytes were tested for the presence of [3H]di-o-tolylguanidine (DTG)-binding sites. Native oocytes were found to contain two intrinsic [3H]DTG-binding sites, a high-affinity site (Kd = 32 +/- 6 nM, Bmax of 45.7 +/- 19 pmol/mg protein) and a low-affinity binding site (Kd = 1.3 +/- 0.7 microM, Bmax of 3.2 +/- 0.7 nmol/mg protein). In a series of radioligand-binding-displacement studies, the high-affinity binding sites were found to have a binding profile which has a similar Kd to that of the mammalian sigma 2-binding site (32 vs. 38 nM). Comparison of the IC50 values for inhibition of [3H]DTG binding in rat liver and oocytes for DTG, haloperidol (HAL), (-)-pentazocine, (+)-3-(3-hydroxyphenyl)-N-propylpiperidine hydrochloride ((+)-3-PPP), (+)-pentazocine and Zn2+, showed similarity in rank (r2 = 0.913) but a 7-fold lower potency in oocytes. These results suggest that the high-affinity [3H]DTG-binding site in oocytes represents a sigma 2-like binding site. Topics: Animals; Binding Sites; Binding, Competitive; Carbazoles; Dextromethorphan; Female; Guanidines; Haloperidol; Liver; Mazindol; Oocytes; Pentazocine; Phenazocine; Piperazines; Piperidines; Radioligand Assay; Rats; Receptors, sigma; Xenopus laevis; Zinc | 1994 |
Antagonism of a (+)N-allylnormetazocine stimulus by (-)PPAP and several structurally related analogs.
Employing rats trained to discriminate 5 mg/kg of the benzomorphan opioid (+)N-allylnormetazocine [(+)NANM] from vehicle, tests of stimulus generalization and antagonism were conducted to determine the influence of several potential sigma-receptor ligands. It has been previously suggested that the (+)NANM stimulus may involve concurrent action at sigma- and phencyclidine (PCP) receptors. Although the low-affinity sigma-antagonist rimcazole was without stimulus-attenuating effect, three novel sigma-ligands--(-)PPAP, CNS 3018, and CNS 3093 (ID50 doses = 3.2, 6.7, and 4.5 mg/kg, respectively)--antagonized the (+)NANM stimulus in a dose-related fashion. The nonselective serotonergic agent 1-(3-trifluoromethyl)phenylpiperazine (TFMPP) produced partial generalization in (+)NANM-trained animals whereas buspirone, a 5-hydroxytryptamine1A (5-HT1A) agonist, attenuated (to 27% drug-appropriate responding) the (+)NANM stimulus. Because the prototypic 5-HT1A agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) failed to attenuate the (+)NANM stimulus at pharmacologically relevant doses, it seems unlikely that the (+)NANM stimulus involves a 5-HT1A mechanism. TFMPP and buspirone display modest affinity for sigma-receptors and this may account for the present findings with these agents. The present results neither establish a role for sigma involvement in the stimulus properties of (+)NANM nor eliminate a role for PCP receptors. They do, however, demonstrate that sigma-ligands with little to no affinity for PCP receptors are capable of antagonizing the (+)NANM stimulus. Topics: 8-Hydroxy-2-(di-n-propylamino)tetralin; Amines; Animals; Antipsychotic Agents; Buspirone; Carbazoles; Generalization, Stimulus; Male; Phenazocine; Phenols; Piperazines; Propylamines; Rats; Rats, Sprague-Dawley; Receptors, Phencyclidine; Receptors, sigma; Serotonin Receptor Agonists | 1993 |
Evidence for an anti-amnesic effect of JO 1784 in the rat: a potent and selective ligand for the sigma receptor.
JO 1784 ((+)-N-Cyclopropyl-methyl-N-methyl-1,4-diphenyl-1-yl-but-3-en-1-ylami ne, hydrochloride), has been recently described as a selective ligand for the sigma receptor with an IC50 of 39 +/- 8 nM28. In the present study the effects of JO 1784 on experimental induced amnesia were investigated using one trial passive avoidance task in rats. Amnesia was produced by injecting scopolamine (1 mg/kg i.p.) 30 min before the second session (T2) on day 2 of the passive avoidance task. The anti-amnesic effect of JO 1784 was compared with other typical and atypical psychotropic drugs which interact at the sigma and or the phencyclidine site. JO 1784 was studied at 5 doses; 0.0625, 0.25, 1.0, 4.0 and 16.0 mg/kg i.p. ((+)-3-(3-hydroxyphenyl)-N-1-(propyl)piperidine ((+)-3-PPP). Rimcazole, (+)-N-allylnormetazocine ((+)-NANM), 1,3-di(2-tolyl) guanidine (DTG) were studied at 4 doses; 0.25, 1.0, 4.0 and 8.0 mg/kg i.p. All drugs were administered 60 min before the test (T2) on day 2 i.e. 30 min before scopolamine. Piracetam (1000 mg/kg p.o.) administered in the same test conditions was used as a reference compound in each experiment. Of the drugs investigated JO 1784 (0.25, 1.0, 4.0 and 16.0 mg/kg i.p.), (+)-3-PPP (0.25, 1.0 and 4.0 mg/kg i.p.), DTG (1.0, 4.0 and 8.0 mg/kg) and piracetam significantly reversed scopolamine induced amnesia on day 3 (T3). At the lower dose, JO 1784 (0.0625 mg/kg) failed to reverse the amnesic effects of scopolamine on day 3. These results suggest that JO 1784 the selective sigma ligand, may be beneficial in amnesic status. Topics: Amnesia; Animals; Antipsychotic Agents; Avoidance Learning; Behavior, Animal; Carbazoles; Cinnamates; Cyclopropanes; Dopamine Agents; Dose-Response Relationship, Drug; Guanidines; Ligands; Male; Phenazocine; Piperidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Scopolamine | 1991 |
Two subtypes of enteric non-opioid sigma receptors in guinea-pig cholinergic motor neurons.
In the longitudinal muscle-myenteric plexus preparation (LMMP) of the guinea-pig ileum, the non-opioid sigma receptors agonists, 1,3-di-ortho-tolylguanidine (DTG) and (+)N-allyl-N-normetazocine [(+)SKF 10,047], had opposite effects on nerve-mediated cholinergic contractions caused by electrical field stimulation. DTG (0.1-10 microM) inhibited and (+)SKF 10,047 (0.1-10 microM) markedly enhanced these contractile responses. Both effects were evaluated in the presence (0.5 or 1 microM) of the putative antagonists at central sigma sites: haloperidol, rimcazole, BMY 14802 and dextromethorphan. Haloperidol and dextromethorphan were ineffective. Rimcazole antagonized the effect of both DTG and (+)SKF 10.047. BMY 14802 antagonized the (+)SKF 10.047-mediated excitatory response only. These results suggest that two sigma receptor subtypes are present in enteric cholinergic motor neurons innervating the longitudinal coat. Rimcazole and BMY 14802 may provide useful tools for the characterization of peripheral non-opioid sigma receptors. Topics: Animals; Anti-Anxiety Agents; Antipsychotic Agents; Carbazoles; Dextromethorphan; Electric Stimulation; Guanidines; Guinea Pigs; Haloperidol; In Vitro Techniques; Male; Motor Neurons; Myenteric Plexus; Parasympathetic Nervous System; Phenazocine; Pyrimidines; Receptors, Opioid; Receptors, sigma | 1991 |
The sigma [corrected] ligand rimcazole antagonises (+)SKF 10,047, but not (+)3-PPP, in the mouse isolated vas deferens.
We have characterized the actions of several sigma receptor ligands on the electrically evoked, neurogenic contractions of the mouse isolated vas deferens. (-)SKF 10,047 was significantly more potent than (+)SKF 10,047 in potentiating twitch contractions and was equipotent with (+)3-PPP. Rimcazole (1 and 3 microM) antagonised the potentiation induced by 100 microM (+)SKF 10,047 and, to a lesser extent, that induced by 30 microM (-)SKF 10,047 but increased that elicited by (+)3-PPP (30 microM). This apparent contradiction may arise from sigma agonists acting in this tissue at both sigma and non-sigma sites. Topics: Animals; Antipsychotic Agents; Carbazoles; In Vitro Techniques; Male; Mice; Mice, Inbred DBA; Muscle, Smooth; Phenazocine; Piperidines; Stereoisomerism; Vas Deferens | 1990 |
Evidence for a model of activation of central sigma systems.
Evidence for a drug-induced activation of central sigma systems is presented. The model is the locomotor activation initiated by a subcutaneous (SC) challenge of 1.6 mg/kg of (+)-butaclamol, (+)-BUT, given 30 min before 10 mg/kg SC of (-)-N-allylnormetazocine, (-)-NAN, in Sprague-Dawley male rats which have been pretreated with four daily injections of 10 mg/kg SC of (-)-NAN. The locomotor activation is characterized by an initial 20 min period of retropulsion and sideways-circling followed by 90 to 100 min of forward locomotion. The locomotor syndrome is antagonized by 10 mg/kg of (+/-)-BMY 14802, 20 mg/kg of rimcazole, and 0.2 mg/kg of haloperidol, but not by 0.04 mg/kg of R(+)SCH23390, 100 mg/kg of S(-)sulpiride, 10 mg/kg of naltrexone, or 2.5 mg/kg of MR2266. The data suggest that the manifestation of the (+)-BUT/(-)-NAN-induced syndrome depends upon intact transmission at central sigma sites. Topics: Animals; Benzazepines; Benzomorphans; Butaclamol; Carbazoles; Dopamine Antagonists; Haloperidol; Kinetics; Male; Models, Biological; Motor Activity; Naltrexone; Narcotic Antagonists; Phenazocine; Pyrimidines; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma; Sulpiride | 1989 |
Regulation of sigma-receptors: high- and low-affinity agonist states, GTP shifts, and up-regulation by rimcazole and 1,3-Di(2-tolyl)guanidine.
The regulation of the central sigma-binding site was investigated using both in vitro and in vivo manipulations in conjunction with radioligand binding. The displacement of the binding of R(+)-[3H]3-[3-hydroxyphenyl]-N-(1-propyl)piperidine [R(+)-[3H]3-PPP] to cortical homogenates by a range of drugs was consistent with the site labelled being a sigma-receptor. (+)-SKF 10,047, (-)-SKF 10,047, (+/-)-cyclazocine, phencyclidine, and dexoxadrol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of less than 1. Further analysis employing nonlinear curve fitting techniques demonstrated that displacement data for these compounds were described better by a model whereby R(+)-[3H]3-PPP was displaced from two discrete sites; approximately 65% of the total sites were in the high-affinity state. In the presence of 10 mM Mg2+ and 0.3 mM GTP, displacement curves for (+)-SKF 10,047 and (+/-)-cyclazocine were shifted to the right. These findings were due to the shift of some 15% of the high-affinity binding sites to a low-affinity state. Saturation experiments revealed that 0.3 mM GTP acted competitively to decrease the affinity of R(+)-[3H]3-PPP for the sigma sites. The sigma-binding site was thus likely to be linked to a guanine nucleotide regulatory (G) protein. Thus sigma drugs could be subdivided on the basis of their GTP sensitivity and pseudo-Hill coefficients, and by analogy with other receptors R(+)-3-PPP, (+)-SKF 10,047, and (+/-)-cyclazocine, may be putative sigma-agonists. 1,3-Di(2-tolyl)guanidine (DTG), rimcazole, and haloperidol displaced R(+)-[3H]3-PPP with pseudo-Hill coefficients of approximately unity and thus may be sigma-antagonists. Subchronic treatment with rimcazole was characterized by slight sedation and a concomitant up-regulation, with a decrease in the affinity, of sigma-binding sites. The schedule of rimcazole also increased dopamine turnover in the nucleus accumbens; both the concentration of 3,4-dihydroxyphenylacetic acid (DOPAC) and the DOPAC/dopamine ratio were elevated. DTG produced similar alterations to the binding parameters of the sigma-binding site; however, changes were not observed in general behavior or accumbal dopamine turnover. sigma-Receptors are likely to be linked to a G protein and are functionally involved in the CNS. Topics: 3,4-Dihydroxyphenylacetic Acid; Animals; Binding, Competitive; Brain; Carbazoles; Cyclazocine; Dopamine; Dopamine Agents; GTP-Binding Proteins; Guanidines; Guanosine Triphosphate; Magnesium; Male; Phenazocine; Rats; Rats, Inbred Strains; Receptors, Opioid; Receptors, sigma | 1989 |
Correlation of inhibitory potencies of putative antagonists for sigma receptors in brain and spleen.
The putative sigma receptor antagonists, haloperidol, HR 375, BMY 14802 and BW 234U potently inhibited both [3H]d-N-allylnormetazocine binding to sigma receptors in brain homogenates and [3H]haloperidol binding to sigma receptors in spleen homogenates. An excellent correlation of inhibitory potencies in the two assay systems was obtained. The results support the view that [3H]d-N-allylnormetazocine and [3H]haloperidol both label the same receptor populations, and suggest that sigma antagonists may be useful in elucidating physiological role(s) of sigma receptors in the nervous and immune systems. Topics: Animals; Antipsychotic Agents; Brain Chemistry; Carbazoles; Guinea Pigs; Haloperidol; In Vitro Techniques; Isoquinolines; Male; Phenazocine; Piperazines; Pyrimidines; Receptors, Opioid; Receptors, sigma; Spleen; Tritium | 1988 |
Activation of the A10 mesolimbic system by the sigma-receptor agonist (+)SKF 10,047 can be blocked by rimcazole, a novel putative antipsychotic.
This study evaluated with electrophysiological and behavioral techniques the ability of rimcazole, a novel putative antipsychotic and selective sigma-receptor ligand, to antagonize the stimulation of the mesocorticolimbic dopamine system by the sigma-agonist, (+)SKF 10,047. Rimcazole effectively blocked the (+)SKF 10,047-induced excitation of ventral tegmental dopamine neurons while having no effect on either spontaneous activity or apomorphine-elicited slowing of A10 firing. Rimcazole also antagonized the behavioral hyperactivity produced by (+)SKF 10,047, but not by d-amphetamine which is also mediated through the same mesolimbic dopamine pathway. These data provide further evidence that rimcazole's novel pharmacologic profile may involve a blockade of sigma-receptors on mesocorticolimbic dopamine neurons. Topics: Animals; Antipsychotic Agents; Carbazoles; Dose-Response Relationship, Drug; Limbic System; Male; Motor Activity; Phenazocine; Rats; Rats, Inbred Strains; Receptors, Dopamine; Receptors, Opioid; Receptors, sigma | 1988 |
Evidence that the potential antipsychotic agent rimcazole (BW 234U) is a specific, competitive antagonist of sigma sites in brain.
Rimcazole (BW 234U) is a potential antipsychotic agent which in open-clinical trials appears to be effective in acute schizophrenic patients. In the present study, rimcazole was found to block the specific binding of [3H]-(+)-SKF 10,047 to sigma sites in rat and guinea pig brain (IC50 = 5.0 X 10(-7) M). The compound was 100 times weaker as a blocker of phencyclidine sites (IC50 = 4.3 X 10(-5) M). At 1 X 10(-5) M, rimcazole had only weak effects on mu, delta, kappa and epsilon opioid receptors. Scatchard analysis of the binding data from guinea pig brain revealed an apparent KD for [3H]-(+)-SKF 10,047 of 85 +/- 5 nM and a Bmax of 824 +/- 27 fmole/mg protein. In the presence of 5 X 10(-7) M BW 234U, the apparent KD was 165 +/- 35 nM, but the Bmax (892 +/- 146 fmoles/mg protein) was not affected. This suggests that rimcazole is a competitive inhibitor of sigma sites. The agent was also capable of blocking sigma sites in vivo (ID50 = 6 mg/kg i.p., mice) as judged by an in vivo sigma receptor binding assay. Thus, if the antipsychotic activity of rimcazole is confirmed in double-blind, placebo-controlled trials, it would be the first compound whose mechanism of antipsychotic activity may best be explained by a direct blockade of sigma sites and not by a direct blockade of dopamine (D2) receptors in brain. Topics: Animals; Antipsychotic Agents; Apomorphine; Binding, Competitive; Brain; Carbazoles; Clozapine; Guinea Pigs; Kinetics; Male; Methylphenidate; Mice; Phenazocine; Phencyclidine; Phenoxybenzamine; Propranolol; Receptors, Opioid; Receptors, sigma; Sulpiride | 1986 |