2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan and carbetapentane

2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan has been researched along with carbetapentane* in 3 studies

Other Studies

3 other study(ies) available for 2--hydroxy-5-9-dimethyl-2-allyl-6-7-benzomorphan and carbetapentane

ArticleYear
Antagonism of NMDA receptors by sigma receptor ligands attenuates chemical ischemia-induced neuronal death in vitro.
    European journal of pharmacology, 2002, Nov-29, Volume: 455, Issue:2-3

    We investigated the effects of sigma receptor ligands on neuronal death induced by chemical ischemia using primary cultures of rat cerebral cortical neurons. The induction of chemical ischemia by sodium azide and 2-deoxy-D-glucose led to delayed neuronal death in a time- and concentration-dependent manner, as determined by trypan blue exclusion. The neurotoxicity was inhibited by N-methyl-D-aspartate (NMDA) receptor antagonists, indicating the involvement of glutamate. The sigma receptor ligands (+)-N-allylnormetazocine ((+)-SKF10,047) and haloperidol, but not carbetapentane and R(+)-3-(3-hydroxyphenyl)-N-propylpiperidine ((+)-3-PPP), prevented chemical ischemia-induced neurotoxicity in a concentration-dependent manner. The protective effects of (+)-SKF10,047 and haloperidol were not affected by the sigma receptor antagonists. (+)-SKF10,047 and haloperidol, but not carbetapentane and (+)-3PPP, inhibited the glutamate-induced increase in intracellular Ca(2+), and the inhibitory effects were not attenuated by sigma receptor antagonists. These results suggest that direct interaction with NMDA receptors but not sigma receptors is crucial to the neuroprotective effects of sigma receptor ligands with affinity for NMDA receptors.

    Topics: 2-Amino-5-phosphonovalerate; Animals; Calcium; Cell Hypoxia; Cell Survival; Cells, Cultured; Cerebral Cortex; Cyclopentanes; Deoxyglucose; Dizocilpine Maleate; Dose-Response Relationship, Drug; Excitatory Amino Acid Antagonists; Fetus; Glucose; Glutamates; Haloperidol; Neurons; Phenazocine; Piperidines; Rats; Rats, Wistar; Receptors, N-Methyl-D-Aspartate; Receptors, sigma; Sodium Azide

2002
Effects of sigma ligands on the cloned mu-, delta- and kappa-opioid receptors co-expressed with G-protein-activated K+ (GIRK) channel in Xenopus oocytes.
    British journal of pharmacology, 1996, Volume: 119, Issue:1

    1. Taking advantage of the functional coupling of the opioid receptors with the G-protein-activated K+ (GIRK) channel, we investigated the effects of sigma (sigma) ligands of various structural and pharmacological classes, (+)-N-allylnormetazocine ((+)-SKF10047) and (+)-cyclazocine, (+)-3-(3-hydroxyphenyl)-N-(1-propyl)piperidine ((+)-3PPP), 1,3-di-(2-tolyl)guanidine (DTG), carbetapentane and haloperidol, on the inward K+ current responses in Xenopus oocytes co-injected with each of the cloned mu-, delta- and kappa-opioid receptor mRNAs and the GIRK1 mRNA. 2. (+)-SKF10047 acted as a delta- and kappa-agonist (EC50 values (microM) = 0.618 and 0.652, respectively) and mu-antagonist (IC50 value (microM) = 8.51). (+)-Cyclazocine acted as a kappa-agonist and mu-antagonist (IC50 = 33.2). (+)-3PPP acted as a kappa-agonist (EC50 = 18.08 and a mu-antagonist. DTG acted as a mu- and kappa-agonist (EC50 = more than 30 and 14.88, respectively). Carbetapentane acted as a kappa-agonist and mu-antagonist (IC50 = 11.2). Haloperidol acted as a mu- and delta-agonist (EC50 = 5.683 and 7.389, respectively). 3. All currents induced by sigma ligands were reduced by 1 microM naloxone, an opioid receptor antagonist, and blocked by 300 microM Ba2+, a GIRK channel blocker. It was also indicated that the antagonism by naloxone at the delta-- and kappa-opioid receptors was weaker than that of naloxone at the mu-opioid receptor. The sigma ligands tested had no effect on the current responses in the oocytes injected with each of the opioid receptor mRNAs alone or with the GIRK1 mRNA alone. 4. We conclude that various sigma ligands directly interact with the cloned mu-, delta- and kappa-opioid receptors in Xenopus oocytes. Our results suggest that the effects of the sigma ligands may be partly mediated by the opioid receptors.

    Topics: Animals; Brain Chemistry; Cyclazocine; Cyclopentanes; Dose-Response Relationship, Drug; GTP-Binding Proteins; Ligands; Oocytes; Phenazocine; Potassium Channels; Receptors, Opioid, kappa; Receptors, Opioid, mu; Receptors, sigma; RNA, Messenger; Xenopus laevis

1996
Sigma receptor-mediated neuroprotection against glutamate toxicity in primary rat neuronal cultures.
    Brain research, 1995, Feb-06, Volume: 671, Issue:1

    The role of the putative sigma receptor in mediating neuroprotection against glutamate-induced neuronal injury was examined in mature cultured rat cortical neurons. With the exception of the selective sigma 1 ligand (+)-3-PPP, all of the sigma ligands tested were neuroprotective, preventing glutamate-induced morphological changes and increases in LDH release. Their rank order of neuroprotective potency (and EC50 values) was as follows: (+)-SKF 10,047 (0.81 microM) > (+)- cyclazocine (2.3 microM) > dextromethorphan (3.1 microM) = haloperidol (3.7 microM) > (+)-pentazocine (8.5 microM) > DTG (42.7 microM) = carbetapentane (46.3 microM). When corrected for relative sigma versus PCP binding affinity, it appears that a positive correlation exists between neuroprotective potency and sigma 1 site affinity. However, there does not appear to be a significant correlation between neuroprotective potency and the sigma 2 site. Critically, none of the sigma ligands were neurotoxic when tested alone at concentrations at least 5-30 times their respective neuroprotective EC50 values. Results from preliminary experiments with the selective sigma 1 ligand (+)-pentazocine indicated that sigma-mediated neuroprotection may involve the buffering of glutamate-induced calcium flux. Collectively, the results of these in vitro experiments demonstrate that sigma ligands are neuroprotective and therefore deserve further exploration as potential therapeutic agents in in vivo models of CNS injury and neurodegenerative disorders.

    Topics: Animals; Calcium; Cells, Cultured; Cyclazocine; Cyclopentanes; Dextromethorphan; Glutamic Acid; Guanidines; Haloperidol; L-Lactate Dehydrogenase; Neurons; Neuroprotective Agents; Pentazocine; Phenazocine; Piperidines; Rats; Receptors, sigma

1995