2--guanylic-acid has been researched along with 3--guanylic-acid* in 4 studies
4 other study(ies) available for 2--guanylic-acid and 3--guanylic-acid
Article | Year |
---|---|
pH dependence of binding reactions from free energy simulations and macroscopic continuum electrostatic calculations: application to 2'GMP/3'GMP binding to ribonuclease T1 and implications for catalysis.
An approach is described for extending free energy calculations to take into account the pH dependence of the relative binding of ligands to an enzyme or other receptor protein. The method is based on the calculation of the free energy difference for a single protonation state via the thermodynamic cycle simulation approach followed by inclusion of all possible protonation states of the enzyme and the inhibitor by use of a macroscopic continuum dielectric (Poisson-Boltzmann) model. A detailed formulation of the combined model is presented. It involves solution of the multiple equilibrium problem and makes use of the calculated pKa values of all titrating groups on both enzyme and ligand. The method is illustrated by calculations of the pH dependence of the differential binding of the inhibitors 2'GMP and 3'GMP to ribonuclease T1. A free energy simulation of the differential binding is made for a given protonation state of the enzyme and inhibitor. Although only qualitative agreement with experiment is obtained, the results provide insights concerning the interactions involved. The pH dependence of the binding is calculated by using the protonation state of the residues from the free energy simulation as the standard state for a Poisson-Boltzmann calculation. Information is obtained concerning the pKa values of the titrating amino acids in the free, 2'GMP and 3'GMP bound enzyme forms of RNase T1 and the difference in the pH dependence of the binding of 2'GMP and 3'GMP to RNase T1. The contributions of different types of interactions (e.g. protein residues versus solvent) to the free energy differences are examined. A free energy simulation of the pKa shift of Glu58 shows that it is important to consider both carboxyl oxygen atoms as possible protonation sites since they may behave very differently in a protein. It is found in the protein that the interactions with the solvent favor the neutral (protonated) state of Glu58. This contrasts sharply with the solution behavior, where the solvent favors the charged state. Analysis of the results shows that the interactions of bound water with other protein residues leads to the observed effect. Comparisons are made with a continuum calculation that uses the charged state employed in the free energy simulation.(ABSTRACT TRUNCATED AT 400 WORDS) Topics: Catalysis; Computer Simulation; Energy Metabolism; Guanosine Monophosphate; Hydrogen-Ion Concentration; Models, Theoretical; Ribonuclease T1 | 1995 |
Modes of mononucleotide binding to ribonuclease T1.
The binding of the mononucleotide inhibitors 2'-GMP, 3'-GMP, and 5'-GMP to genetically engineered ribonuclease T1 has been investigated by conventional inhibition kinetics, fluorimetric titrations, molecular modeling, and fast relaxation techniques. The fluorimetric titrations in conjunction with molecular modeling revealed that apart from the already known primary binding site, three to four additional sites are present on the enzyme's surface. The association constants obtained from the fluorimetric titrations and the temperature jump experiments range between 3.1 x 10(6) M-1 and 4.3 x 10(6) M-1, indicating that the binding of the mononucleotides to the specific binding site of ribonuclease T1 is at least one order of magnitude tighter than has been anticipated so far. The kinetics of binding are nearly diffusion controlled with a kon determined for 2'-GMP and 3'-GMP, as (5.0 +/- 0.5 x 10(9) and 6.1 +/- 0.5 x 10(9) M-1, s-1 and koff as 1.2 +/- 0.2 x 10(3) and 2.0 +/- 0.3 x 10(3) s-1, respectively. Molecular modeling studies indicate that all three nucleotides are able to bind via their phosphate group to a positively charged array of surface amino acids including His27, His40, Lys41, and most probably Lys25 without obvious stereochemical hindrance. We propose that RNA wraps around RNase T1 in a similar fashion via phosphate binding when enzymatic hydrolysis occurs. Topics: Binding Sites; Computer Simulation; Guanosine Monophosphate; Kinetics; Models, Molecular; Ribonuclease T1; Spectrometry, Fluorescence; Thermodynamics | 1992 |
Hydrophobic effects on protein/nucleic acid interaction: enhancement of substrate binding by mutating tyrosine 45 to tryptophan in ribonuclease T1.
Hydrophobic effects on binding of ribonuclease T1 to guanine bases of several ribonucleotides have been proved by mutating a hydrophobic residue at the recognition site and by measuring the effect on binding. Mutation of a hydrophobic surface residue to a more hydrophobic residue (Tyr45----Trp) enhances the binding to ribonucleotides, including mononucleotide inhibitor and product, and a synthetic substrate-analog trinucleotide as well as the binding to dinucleotide substrates and RNA. Enhancements on binding to non-substrate ribonucleotides by the mutation have been observed with free energy changes ranging from -2.2 to -3.9 kJ/mol. These changes are in good agreement with that of substrate binding, -2.3 kJ/mol, which is calculated from Michaelis constants obtained from kinetic studies. It is shown, by comparing the observed and calculated changes in binding free energy with differences in the observed transfer free energy changes of the amino acid side chains from organic solvents to water, that the enhancement observed on guanine binding comes from the difference in the hydrophobic effects of the side chains of tyrosine and tryptophan. Furthermore, a linear relationship between nucleolytic activities and hydrophobicity of the residues (Ala, Phe, Tyr, Trp) at position 45 is observed. The mutation could not change substantially the base specificity of RNase T1, which exhibits a prime requirement for guanine bases of substrates. Topics: Binding Sites; Guanosine Monophosphate; Kinetics; Models, Molecular; Mutagenesis, Site-Directed; Oligoribonucleotides; Protein Conformation; Ribonuclease T1; Ribonucleotides; RNA; Surface Properties; Tryptophan | 1991 |
Thermodynamic analysis of the equilibrium, association and dissociation of 2'GMP and 3'GMP with ribonuclease T1 at pH 5.3.
Fluorescence titrations and temperature-jump relaxation experiments were performed as a function of temperature on ribonuclease T1 with the inhibitors 2'GMP and 3'GMP to obtain information on the energetics and molecular events controlling the binding of those inhibitors. Results from the titration and temperature-jump experiments were in agreement concerning the equilibrium constant. The larger equilibrium constant for 2'GMP is enthalpic in origin and is due to both a higher on rate and a lower off rate as compared to 3'GMP. On rates for both inhibitors appear to be below the diffusion controlled limit, apparently due to conformational changes in the portion of the active site responsible for recognition of the guanine base. Comparison of the measured enthalpic and entropic terms associated with the equilibrium constant determined from the fluorescence titrations are in disagreement with those calculated from the on and off rates indicating the presence of an induced conformational change in the 2'GMP-enzyme complex. This second conformational change appears to be due to additional interactions between 2'GMP and the catalytic portion of the active site, which may also be responsible for the differences in the binding constant, the on rate and the off rate between 2'GMP and 3'GMP. Topics: Binding Sites; Chemical Phenomena; Chemistry, Physical; Diffusion; Guanosine Monophosphate; Hydrogen-Ion Concentration; Protein Conformation; Ribonuclease T1; Spectrometry, Fluorescence; Temperature; Thermodynamics | 1991 |